pubs.acs.org/joc
auxiliaries for asymmetric synthesis.3 However, methods
Stereospecific Halogenation of P(O)-H Bonds with
Copper(II) Chloride Affording Optically Active
Z1Z2P(O)Cl
for their preparation are rather limited.4
The highly reactive organophosphorus chlorides Z1Z2P(O)
Cl easily couple with a variety of nucleophiles (Nu) (eq 1).5
They are among the most frequently used starting chemicals
for the preparation of organophosphorus derivatives.
Yongbo Zhou,† Gang Wang,† Yuta Saga,‡ Ruwei Shen,†
Midori Goto,† Yufen Zhao,§ and Li-Biao Han*,†
Z1Z2PðOÞCl Nucleophiles Z Z PðOÞNu
ð1Þ
f
1
2
†National Institute of Advanced Industrial Science and
Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan,
‡Katayama Chemical Industries Co., Ltd., Amagasaki-City,
Hyogo 660-0892, Japan, and §Department of Chemistry and
Key Laboratory for Chemical Biology of Fujian Province,
Xiamen University, Xiamen 361005, China
We assumed that if an optically active Z1Z2P(O)Cl could be
easily prepared and if Z1Z2P(O)Cl could react with a nucleo-
phile stereospecifically, a variety of optically active organo-
phosphorus acid derivatives Z1Z2P(O)Nu would be readily
prepared (eq 2). However, a literature search showed that
although a racemic Z1Z2P(O)Cl was readily available,5a the
preparation of an optically active Z1Z2P(O)Cl was rather
difficult.6 For example, optically active t-BuPhP(O)Br and t-
BuPhP(S)Cl were obtained from the reactions of optically
active t-BuPhP(O)H with N-bromosuccinimide (NBS) and N-
chlorosuccinimide (NCS), respectively,6a whereas t-BuPhP(O)
Cl was obtained from the reaction of an optically active t-
BuPhP(O)H with CH3S(O)Cl (ca. 50% ee),6b NCS,6c or CCl4
and Et3N.6d t-Bu(MeO)P(O)Cl (ca. 66% ee) was obtained via
a similar reaction.6e Recently, an optically active t-BuPhP(Se)
Cl was prepared via the reaction of diastereomerically pure
phosphinoselenoic acid salt with oxalyl chloride.6f,g
Received August 5, 2010
A general and efficient method for the preparation of
optically active Z1Z2P(O)Cl from the easily prepared
optically active H-phosphinates and H-phosphine oxides
was reported. H-Phosphinates and H-phosphine oxides
react stereospecifically with CuCl2 to produce the corre-
sponding optically active Z1Z2P(O)Cl with retention of
configuration at the phosphorus center. Optically active
Z1Z2P(O)Cl reacts easily with a variety of nucleophiles to
produce other chiral organophosphorus acid derivatives
with inversion of configuration at phosphorus.
Herein we disclose our studies aiming at developing a
general way for the preparation of these optically active
Z1Z2P(O)Cl 2 and its conversion to other optically active
phosphorus compounds 3 via stereospecific nucleophilic
substitution reactions (eq 2).
Optically active organophosphorus acid derivatives
Z1Z2P(O)Nu1 are important compounds that not only show
a diverse biological activities such as antibacterial, antipsor-
iatic, and anti-HIV effect2 but also are important chiral
Our strategy for the preparation of 2 is to find an efficient
way for the stereospecific halogenation of the relatively easily
accessible secondary phosphine oxides and H-phosphinates7
under mild reaction conditions. Along this line, a few known
halogenation methods of P(O)-H racemates were tested.5a
First, since phosphorochloridates (RO)2P(O)Cl were prepared
(1) (a) Imamoto, T. In Handbook of Organophosphorus Chemistry; Engel,
R., Ed.; Marcel Dekker: New York, 1992; Chapter 1. (b) Quin, L. D. A Guide
to Organophosphorus Chemistry; Wiley-Interscience: New York, 2000; Chap-
ter 9. (c) Sasaki, M. In Chirality in Agrochemicals; Kurihara, N., Miyamoto,
J., Eds.; Wiley & Sons: Chichester, U.K., 1998; p 85.
(2) (a) Kukhar, V. P.; Hudson, H. R. Aminophosphonic and Aminophos-
phinic Acids: Chemistry and Biological Activity; Wiley & Sons: Chichester,
U.K., 2000. (b) Sawa, M.; Tsukamoto, T.; Kiyoi, T.; Kurokawa, K.;
Nakajima, F.; Nakada, Y.; Yokota, K.; Inoue, Y.; Kondo, H.; Yoshino,
K. J. Med. Chem. 2002, 45, 930. (c) Camp, N. P.; Perry, D. A.; Kinchington,
D.; Hawkins, P. C. D.; Hitchcock, P. B.; Gani, D. Bioorg. Med. Chem. 1995,
3, 297.
(4) (a) Koizumi, T.; Yanada, R.; Takagi, H.; Hirai, H.; Yoshii, E.
Tetrahedron lett. 1981, 22, 477. (b) Hall, C. R.; Inch, T. D.; Peacock, G.;
Pottage, C.; Williams, N. E. J. Chem. Soc., Perkin Trans. 1 1984, 669. (c)
Haynes, R. K.; Au-Yeung, T. L.; Chan, W. K.; Lam, W. L.; Li, Z. Y.; Yeung,
L. L.; Chan, A. S. C.; Li, P.; Koen, M.; Mitchell, C. R.; Vonwiller, S. C. Eur.
J. Org. Chem. 2000, 3205. (d) Grabulosa, A.; Granell, J.; Muller, G. Coord.
Chem. Rev. 2007, 251, 25. (e) Bergin, E.; O’Connor, C. T.; Robinson, S. B.;
McGarrigle, E. M.; O’Mahony, C. P.; Gilheany, D. G. J. Am. Chem. Soc.
2007, 129, 9566.
(5) (a) Kosolapoff, G. M.; Maier, L. In Organic Phosphorus Compounds;
Wiley-Interscience: New York, 1972; Vol. 4, Chapter 9. (b) Oliana, M.; King,
F.; Horton, P. N.; Hursthouse, M. B.; Hii, K. K. J. Org. Chem. 2006, 71,
2472. (c) Li, Y. C.; Aubert, S. D.; Maes, E. G.; Raushel, F. M. J. Am. Chem.
Soc. 2004, 126, 8888. (d) Clive, D. L. J.; Kang, S. Z. J. Org. Chem. 2001, 66,
6083. (e) Malachowski, W. P.; Coward, J. K. J. Org. Chem. 1994, 59, 7625.
ꢀ
(3) (a) Darcel, C.; Uziel, J.; Juge, S. In Phosphorous Ligands in Asym-
metric Catalysis; Borner, A., Ed.; Wiley-VCH: Weinheim, 2008; Vol. 3, pp
€
1211-1233. (b) Maj, A. M.; Pietrusiewicz, K. M.; Suisse, I.; Agbossou, F.;
Mortreux, A. Tetrahedron: Asymmetry 1999, 10, 831. (c) Legrand, O.;
Brunel, J. M.; Buono, G. Tetrahedron lett. 1998, 39, 9419. (d) Gamble,
M. P.; Smith, A. R. C.; Wills, M. J. Org. Chem. 1998, 63, 6068. (e) Brown,
J. M.; Carey, J. V.; Russel, M. J. H. Tetrahedron 1990, 46, 4877. (f) Brunel,
J. M.; Legrand, O.; Buono, G. Eur. J. Org. Chem. 2000, 3313. (g) Vinci, D.;
Mateus, N.; Wu, X.; Hancock, F.; Steiner, A.; Xiao, J. Org. Lett. 2006, 8, 216.
(h) Matsukawa, S.; Sugama, H.; Imamoto, T. Tetrahedron Lett. 2000, 41,
6461.
7924 J. Org. Chem. 2010, 75, 7924–7927
Published on Web 10/29/2010
DOI: 10.1021/jo101540d
r
2010 American Chemical Society