ChemComm
Page 4 of 4
COMMUNICATION
ChemComm
6
7
8
Nephrol., 2002, 15, 41-53.
Unlike compound
7, it was noticed that most of other
P. M. Q. MallaReddy M Reddy, JOP. J. DPaOnI:c1r0e.1a0s3,92/0C06C1,C07792G
2
, 212-
compounds with moderate transport ability exhibited different
dynamic decay processes. Taking compound as example
(ESI , Fig. S6), the fluorescence was gradually reduce after
3
218.
†
(a) J. T. Davis, Top. Heterocycl. Chem., 2010, 24, 145-176; (b)
R. I. S. Diaz, J. Regourd, P. V. Santacroce, J. T. Davis, D. L.
Jakeman and A. Thompson, Chem. Commun., 2007, 2701-
2703; (c) J. L. Sessler, L. R. Eller, W.-S. Cho, S. Nicolaou, A.
Aguilar, J. T. Lee, V. M. Lynch and D. J. Magda, Angew. Chem.,
Int. Ed., 2005, 44, 5989-5992.
addition of transporter at low concentrations, however, the
fluorescence appeared a rapid drop followed by gradually
decrease when the concentration was up to 1.25 mol%. And
the drop was enhanced with concentrations. All these guided
us to suggest that different mechanism maybe appear for
9
(a) P. A. Gale, C. C. Tong, C. J. E. Haynes, O. Adeosun, D. E.
Gross, E. Karnas, E. M. Sedenberg, R. Quesada and J. L.
Sessler, J. Am. Chem. Soc., 2010, 132, 3240-3241; (b) C. C.
Tong, R. Quesada, J. L. Sessler and P. A. Gale, Chem.
Commun., 2008, 6321-6323.
compound
3 at high concentrations. To confirm the hypothesis,
both low (0.125 mol%) and high concentrations (2.0 mol%) of
3
were applied for variant cholesterol assay. As illustrated in Fig.
3b, the transport showed typical carrier mechanism at 0.125
mol% by the obviously decreased activity with higher ratio of
10 (a) H. Valkenier, L. W. Judd, H. Li, S. Hussain, D. N. Sheppard
and A. P. Davis, J. Am. Chem. Soc., 2014, 136, 12507-12512;
(b) D. S. Kim and J. L. Sessler, Chem. Soc. Rev., 2015, 44, 532-
546; (c) H. Valkenier and A. P. Davis, Acc. Chem. Res., 2013,
46, 2898-2909.
11 (a) P. A. Gale, R. Pérez-Tomás and R. Quesada, Acc. Chem.
Res., 2013, 46, 2801-2813; (b) V. Soto-Cerrato, P. Manuel-
Manresa, E. Hernando, S. Calabuig-Fariñas, A. Martínez-
Romero, V. Fernández-Dueñas, K. Sahlholm, T. Knöpfel, M.
García-Valverde, A. M. Rodilla, E. Jantus-Lewintre, R. Farràs,
F. Ciruela, R. Pérez-Tomás and R. Quesada, J. Am. Chem. Soc.,
2015, 137, 15892-15898.
cholesterol, coinciding with the U-tube experiment (ESI†, Fig.
S16). However, at high concentration of 2.0 mol% as shown in
Fig. 3c, the drop value kept constant despite the change of
cholesterol content, which guided us to speculate the channel
contribution by the stacking of compound
Inferential evidence for channel stacking in membrane was
supported by the self-assembly of compound in CHCl3 in the
presence of anions (ESI , Fig. S17).
3
in membrane.20
3
†
In conclusion, we have demonstrated that aryl-triazole
based oligomers can mediate the transmembrane transport by
anion recognition. The distinctive soft CH···Cl- interactions
12 (a) M. Lisbjerg, H. Valkenier, B. M. Jessen, H. Al-Kerdi, A. P.
Davis and M. Pittelkow, J. Am. Chem. Soc., 2015, 137, 4948-
4951; (b) P. V. Santacroce, O. A. Okunola, P. Y. Zavalij and J. T.
Davis, Chem. Commun., 2006, 3246-3248.
exhibited excellent Cl-/HCO3 selectivity and the adjustment of
-
13 (a) A. V. Koulou , T. N. Lambert, R. Shukla, M. Jain, J. M. Boon,
B. D. Smith, H. Y. Li, D. N. Sheppard, J. B. Joos, J. P. Clare, A. P.
Davis, Angew. Chem. Int. Ed., 2003, 42, 4931-4933; (b) S.
Hussain, P. R. Brotherhood, L. W. Judd, A. P. Davis, J. Am.
Chem. Soc., 2011, 133, 1614-1617; (c) S. J. Moore, C. J. E.
Haynes, J. Gonzalez, J. L. Sutton, S. J. Brooks, M. E. Light, J.
Herniman, G. J. Langley, V. Soto-Cerrato, R. Perez-Tomas, I.
lipophilicity and affinity optimized an efficient activity at very
low transporter/lipid molar ratio (EC50 of
7 at ~0.025 mol%).
With the facile click-based synthesis, we believe the
oligotriazoles provide new opportunities for developing more
potent anion transporters with high activity and selectivity.
This work was supported by NSFC (21472044, 21425311,
and 21373084) and The Program for Professor of Special
Appointment (Eastern Scholar) at Shanghai Institutions of
Higher Learning.
Marques, P. J. Costa, V. Felix, P. A. Gale, Chem. Sci., 2013, 4,
103-117; d) N. J. Andrews, C. J. E. Haynes, M. E. Light, S. J.
Moore, C. C. Tong, J. T. Davis, W. A. Harrell Jr, P. A. Gale,
Chem. Sci., 2011, 2, 256-260.
14 (a) H. Juwarker, J. M. Lenhardt, D. M. Pham and S. L. Craig,
Angew. Chem., Int. Ed., 2008, 47, 3740-3743; (b) R. M.
Meudtner and S. Hecht, Angew. Chem., Int. Ed., 2008, 47
4926-4930.
15 (a) Y. Li and A. H. Flood, Angew. Chem. Int. Ed., 2008, 47
,
Notes and references
1
(a) S. Y. Chiu and G. F. Wilson, J. Physiol., 1989, 408, 199-222;
(b) T. E. DeCoursey, K. G. Chandy, S. Gupta and M. D. Cahalan,
Nature, 1984, 307, 465-468; (c) B. Legutko, M. Staufenbiel
and K. Krieglstein, Int. J. Dev. Neurosci., 1998, 16, 347-352.
F. M. Ashcroft, Ion Channels and Disease, Academic Press,
San Diego, 2000.
,
2649-2652; (b) Y. Hua, Y. Liu, C.-H. Chen and A. H. Flood, J.
Am. Chem. Soc., 2013, 135, 14401-14412; (c) Y. Li and A. H.
Flood, J. Am. Chem. Soc., 2008, 130, 12111-12122.
2
3
16 (a) A. P. Davis, D. N. Sheppard and B. D. Smith, Chem. Soc.
Rev., 2007, 36, 348-357; (b) P. A. Gale, Acc. Chem. Res., 2011,
44, 216-226.
(a) A. Fürstner, Angew. Chem., Int. Ed., 2003, 42, 3582-3603;
(b) C. A. Hübner and T. J. Jentsch, Hum. Mol. Genet., 2002, 11
,
17 J. Cai and J. L. Sessler, Chem. Soc. Rev., 2014, 43, 6198-6213.
18 (a) C. J. E. Haynes, N. Busschaert, I. L. Kirby, J. Herniman, M. E.
Light, N. J. Wells, I. Marques, V. Felix and P. A. Gale, Org.
Biomol. Chem., 2014, 12, 62-72; (b) V. Saggiomo, S. Otto, I.
Marques, V. Felix, T. Torroba and R. Quesada, Chem.
Commun., 2012, 48, 5274-5276.
2435-2445; (c) B. Dworakowska and K. Dołowy, Acta Biochim.
Pol., 2000, 47,685–703.
(a) J. T. Davis, O. Okunola and R. Quesada, Chem. Soc. Rev.,
2010, 39, 3843-3862; (b) S.-K. Ko, S. K. Kim, A. Share, V. M.
Lynch, J. Park, W. Namkung, W. Van Rossom, N. Busschaert,
4
P. A. Gale, J. L. Sessler and I. Shin, Nat. Chem., 2014,
892; (c) G. W. Gokel and S. Negin, Acc. Chem. Res., 2013, 46
6, 885-
19 N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernandez,
,
R. Perez-Tomas and P. A. Gale, J. Am. Chem. Soc., 2011, 133
14136-14148.
,
2824-2833; (d) P. R. Brotherhood and A. P. Davis, Chem. Soc.
Rev., 2010, 39, 3633-3647; (e) H. Li, H. Valkenier, L. W. Judd,
P. R. Brotherhood, S. Hussain, J. A. Cooper, O. Jurček, H. A.
20 (a) C. R. Yamnitz, S. Negin, I. A. Carasel, R. K. Winter and G.
W. Gokel, Chem. Commun., 2010, 46, 2838-2840; (b) T. Liu, C.
Bao, H. Wang, Y. Lin, H. Jia and L. Zhu, Chem. Commun., 2013,
49, 10311-10313.
Sparkes, D. N. Sheppard and A. P. Davis, Nat. Chem., 2016, 8,
24-32.
5
R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait and R.
MacKinnon, Nature, 2002, 415, 287-294.
4 | Chem.Commun., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2016