ARTICLE
Chem Int Ed 2002, 41, 1614–1617; (c) Yamamoto, C.; Okamoto,
Y. Bull Chem Soc Jpn 2004, 77, 227–257.
a probe molecule. Because of the restricted rotation of the
two naphthyl rings around its 1,1-bond, BINOL exists in the
atropisomeric form; however, the racemic compound only
give single hydroxyl proton signal in an achiral NMR
environment.
3 Coates, G. W. Chem Rev 2000, 100, 1223–1252.
4 (a) Matsumoto, A. In Handbook of Radical Polymerization;
Matyjazsewski, K.; Davis, T. P., Eds.; Wiley: Hoboken, NJ,
2002; pp 691–773; (b) Nakano, T.; Okamoto, Y. Macromol
Rapid Commum 2000, 21, 603–612; (c) Nakano, T.; Okamoto,
Y. Chem Rev 2001, 101, 4013–4038; (d) Nagara, Y.; Nakano,
T.; Okamoto, Y.; Gotoh, Y.; Nagura, M. Polymer 2001, 42,
9679–9686.
For comparison, Figure 6 shows the hydroxyl region in the
1H NMR spectra of racemic BINOL in the presence of poly
(ROPAM)s (R ¼ Me and Pri) with a variety of tacticity. In all
cases, the hydroxyl proton signal of BINOL at d 5.05 was
shifted downfield on interaction with the polymers. With the
exception of the syndiotactic-rich poly[(S)-MeOPAM]s synthe-
sized by the radical polymerization in methanol (a–c), the
polymers having an isotactic-rich structure made the
hydroxyl signal split into two peaks that are ascribed respec-
tively to the levo- and dextro-isomer. The assignment of the
two split peaks was determined by NMR measurements with
a separate enantiomer under the same measurement condi-
tions. It is noteworthy that the magnitude of this signal split
was closely dependent on the stereoregularity of the poly-
mers that were obtained in the polymerization system using
n-butanol as solvent, as shown in Figure 6(d–f and g–i). It is
similar to that previously observed in the case of polymetha-
crylamide analogs.11(b) These results indicate that the stereo-
regularity of the obtained optically active poly(ROPAM)s sig-
nificantly affected the chiral recognition of the polymers, as
seen in other systems.23
5 (a) Okamoto, Y.; Habaue, S.; Isobe, Y.; Nakano, T. Macromol
Symp 2002, 183, 83–88; (b) Isobe, Y.; Fujioka, D.; Habaue, S.;
Okamoto, Y. J Am Chem Soc 2001, 123, 7180–7181.
6 (a) Suito, Y.; Isobe, Y.; Habaue, S.; Okamoto, Y. J Polym Sci
Part A: Polym Chem 2002, 40, 2496–2500; (b) Isobe, Y.; Suito,
Y.; Habaue, S.; Okamoto, Y. J Polym Sci Part A: Polym Chem
2003, 41, 1027–1033; (c) Habaue, S.; Isobe, Y.; Okamoto, Y. Tet-
rahedron 2002, 58, 8205–8209.
7 Baraki, H.; Habaue, S.; Okamoto, Y. Macromolecules 2001,
34, 4724–4729.
8 (a) Isobe, Y.; Nakano, T.; Okamoto, Y. J Polym Sci Part A:
Polym Chem 2001, 39, 1463–1471; (b) Morioka, K.; Suito, Y.;
Isobe, Y.; Habaue, S.; Okamoto, Y. J Polym Sci Part A: Polym
Chem 2003, 41, 3354–3360.
9 (a) Lutz, J.-F.; Neugebauer, D.; Matyjazsewski, K. J Am Chem
Soc 2003, 125, 6986–6993; (b) Lutz, J.-F.; Jakubowski, Matyjaz-
sewski, K. Macromol Rapid Commun 2004, 25, 486–492.
CONCLUSIONS
10 (a) Ray, B.; Isobe, Y.; Morioka, K.; Habaue, S.; Okamoto, Y.;
Kamigaito, M. Macromolecules 2003, 36, 543–545; (b) Kami-
gaito, M.; Satoh, K. Macromolecules 2008, 41, 269–276; (c)
Jiang, J.; Lu, X.; Lu, Y. Polymer 2008, 1770–1776.
The radical polymerization of the acrylamide derivatives
bearing a chiral oxazoline chromophore was carried out in
the presence of rare earth metal trifluoromethanesulfonates
(Ln(OTf)3, Ln ¼ La, Nd, Sm, and Y). It was found that
Y(OTf)3 could effectively increase the isotactic specificity
during the radical polymerizations when using n-butanol as
solvent. The chiroptical and fluorescence properties of the
optically active polymers were significantly dependent on
their stereoregularity. On the basis of the temperature de-
pendence of the specific rotation together with the
preliminary AFM observations, the polymers rich in isotactic-
ity might contain the prevailing one-handed helical chain
sections in solution. Furthermore, the enantioselective inter-
action of the isotactic-rich polymers with BINOL predicts
they have some potential uses in the area of chiral
separation.
11 (a) Xi, X. J.; Lou, L. P.; Jiang, L. M.; Sun, W. L.; Shen, Z. Q.
Polymer 2008, 49, 2065–2070; (b) Liu, G. X.; Lu, W.; Jiang, L.
M.; Sun, W. L.; Shen, Z. Q. Acta Polym Sinica 2009, 8, 775–780.
12 (a) Blaschke, G. Angew Chem Int Ed Engl 1980, 19, 13–24;
(b) Blaschke, G.; Broker, W.; Frankel E. Angew Chem Int Ed
Engl 1986, 25, 830–831; (c) Blaschke, G. J Liq Chromatogr 1986,
9, 341–368; (d) Arlt, D.; Bomer, B.; Grosser, R.; Lange, W.
¨
Angew Chem Int Ed Engl 1991, 30, 1662–1664.
13 Kobayashi, S.; Hachiya, I. J Org Chem 1994, 59, 3590–3596.
14 (a) Fu, Z.; Xi, X. J.; Jiang, L. M.; Shen, Z. Q. React Funct
Polym 2007, 67, 636–643; (b) Xi, X. J.; Jiang, L. M.; Sun, W. L.;
Shen, Z. Q. Eur Polym J 2005, 41, 2592–2601.
The authors are indebted to the financial support of the
National Natural Science Foundation of China (Grant No.
21074107).
15 Koleske, J. V.; Lundberg, R. D. J Polym Sci Part A-1: Polym
Chem 1969, 7, 173–181.
16 (a) Zhang, J.; Liu, W.; Okamoto, Y. Polym J 2000, 32,
694–699; (b) Sanda, F.; Nakamura, M.; Endo, T. J Polym Sci
Part A-1: Polym Chem 1998, 36, 2681–2690.
REFERENCES AND NOTES
17 (a) Hoshikawa, N.; Totta, Y.; Okamoto, Y. J Am Chem Soc
2003, 125, 12380–12381; (b) Okamoto, Y.; Nakano, T. 1994,
Chem Rev 94, 349–372; (c) Nakano, T.; Okamoto, Y.; Hatada, K.
J Am Chem Soc 1992, 114, 1318–1329.
1 Nakano, T.; Okamoto, Y. In ACS Symposium Series 685;
Matyjazsewski, K., Ed.; American Chemical Society: Washing-
ton, DC, 1998; pp 451–462.
2 (a) Hatada, K.; Kitayama, T.; Ute, K. Prog Polym Sci 1988, 13,
18 (a) Isobe, Y.; Onimura, K.; Tsutsumi, H.; Oishi, T. J Polym
189–276; (b) Reggelin, M.; Schultz, M.; Holbach, M. Angew
Sci Part A: Polym Chem 2001, 39, 3556–3565; (b) Oishi, T.;
POLYACRYLAMIDES BEARING AN OXAZOLINE PENDANT, LU ET AL.
5417