Mechanism of Pd-Catalyzed Aromatic C-H Oxidation
A R T I C L E S
Scheme 1. Oxidative Functionalization of the C-H Bond Could
Proceed via Direct Electrophilic Substitution (A, redox neutral at
Pd), Oxidative Addition To Afford a Dinuclear Pd(III) Complex
Followed by Bimetallic Reductive Elimination (B), or Oxidative
Addition To Afford a Mononuclear Pd(IV) Complex (C) Followed by
Monometallic Reductive Elimination
redox mechanisms for Pd-catalyzed aromatic C-H oxidations.
Each of the three fundamental steps of the proposed Pd(II)/
Pd(IV) redox mechanismsspalladation of aromatic C-H bonds
by Pd(II) to afford Pd(II) aryl complexes,11 oxidation of Pd(II)
aryl complexes to afford Pd(IV) complexes,12 and reductive
elimination of C-C,13 C-O,14 C-Cl,15 and C-F16 bonds from
Pd(IV) complexesshave been independently documented in
stoichiometric organometallic reactions. However, the relevance
of the reported stoichiometric reactions of Pd(IV) complexes
to catalysis has not yet been established by in situ study of
catalysis.
complex. The combination of kinetic and structural information
has allowed, for the first time in the field of Pd-catalyzed
aromatic C-H oxidation, discussion of both structure and
oxidation state of the high-valent palladium complexes relevant
to redox catalysis. We propose a mechanism for Pd(OAc)2-
catalyzed C-H chlorination, which accounts for previously
reported results, including minor byproduct formation (<1%).
Our results suggest that dinuclear Pd(III) intermediates are
relevant in reactions previously believed to proceed via Pd(IV)
complexes.
Pd-catalyzed C-H oxidation reactions are commonly initiated
by C-H metalation to form a Pd-C bond.7 Conceptually,
subsequent oxidative functionalization of the nascent Pd-C
bond can proceed by several different mechanisms (Scheme 1).
Direct electrophilic Pd-C bond cleavage via intermediate A
would proceed without oxidation state change at palladium.8
Alternatively, metal-centered oxidation would afford a high-
valent Pd complex, such as dinuclear Pd(III) intermediate B or
mononuclear Pd(IV) intermediate C, which would afford the
observed products via reductive elimination.
In 2009, we reported C-Cl, C-Br, and C-O reductive
elimination reactions from well-defined dinuclear Pd(III) com-
plexes (1) and proposed that reductive elimination from related
dinuclear Pd(III) complexes may be the product-forming step
in a variety of palladium-catalyzed oxidative C-H functional-
izations (eq 1).17 Deprez and Sanford reported a study of
Pd(OAc)2-catalyzed oxidative C-C bond-forming reactions and
implicated dinuclear Pd intermediates.18 On the basis of these
studies, mechanisms involving dinuclear Pd(III) intermediates
in catalysis are emerging as a viable alternative to previously
accepted mononuclear Pd(IV)-based mechanisms.
Mononuclear Pd(IV) intermediates in Pd-catalyzed C-H
oxidation chemistry were first proposed by Henry in 1971.3
Stock,9 Crabtree,10 and Sanford5k proposed similar Pd(II)/Pd(IV)
Herein, we report an investigation of the mechanism of
Pd(OAc)2-catalyzed acetoxylation and chlorination of 2-phe-
nylpyridine derivatives. We discuss the difficulties inherent in
choosing appropriate model complexes for discussion of the
mechanism of catalysis and present data obtained under condi-
tions relevant to catalysis. Observation and isolation of the
catalyst resting state of chlorination, combined with measure-
ments of reaction kinetics during catalysis has implicated the
intermediacy of dinuclear complexes in the redox cycle of
catalysis. Informed by results obtained by in situ monitoring of
(6) For olefin oxidations, see (a) Vicente, J.; Saura-Llamas, I.; Bautista,
D. Organometallics 2005, 24, 6001–6004. (b) Alexanian, E. J.; Lee,
C.; Sorensen, E. J. J. Am. Chem. Soc. 2005, 127, 7690–7691. (c) Liu,
G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179–7181. (d) Welbes,
L. L.; Lyons, T. W.; Cychosz, K. A.; Sanford, M. S. J. Am. Chem.
Soc. 2007, 129, 5836–5837. (e) Mun˜iz, K. J. Am. Chem. Soc. 2007,
129, 14542–14543. (f) Desai, L. V.; Sanford, M. S. Angew. Chem.,
Int. Ed. 2007, 46, 5737–5740. (g) Tong, X.; Beller, M.; Tse, M. K.
J. Am. Chem. Soc. 2007, 129, 4906–4907. (h) Liu, H.; Yu, J.; Wang,
L.; Tong, X. Tet. Lett. 2008, 49, 6924–6928. (i) Tang, S.; Peng, P.;
Wang, Z.-Q.; Tang, B.-X.; Deng, C.-L.; Li, J.-H.; Zhong, P.; Wang,
N.-X. Org. Lett. 2008, 10, 1875–1878. (j) Ho¨velmann, C. H.; Streuff,
J.; Brelot, L.; Mun˜iz, K. Chem. Commun. 2008, 2334–2336. (k) Mun˜iz,
K.; Ho¨velmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130, 763–
773. (l) Tang, S.; Peng, P.; Pi, S.-F.; Liang, Y.; Wang, N.-X.; Li,
J.-H. Org. Lett. 2008, 10, 1179–1182. (m) Li, Y.; Song, D.; Dong,
V. M. J. Am. Chem. Soc. 2008, 130, 2962–2964. (n) Yin, G.; Liu, G.
Angew. Chem., Int. Ed. 2008, 47, 5442–5445. (o) Tsujihara, T.;
Takenaka, K.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Am. Chem.
Soc. 2009, 131, 3452–3453. (p) Wang, A.; Jiang, H.; Chen, H. J. Am.
Chem. Soc. 2009, 131, 3846–3847. (q) Wang, X.; Mei, T.-S.; Yu,
J.-Q. J. Am. Chem. Soc. 2009, 131, 7520–7521. (r) Zhao, X.;
Dimitrijevic´, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466–
3467.
(11) (a) Cope, A. C.; Siekman, R. W. J. Am. Chem. Soc. 1965, 87, 3272–
3273. (b) Ryabov, A. D. Synthesis 1985, 233–252. (c) Fuchita, Y.;
Hiraki, K.; Kamogawa, Y.; Suenaga, M. J. Chem. Soc., Chem.
Commun. 1987, 941–942. (d) Fuchita, Y.; Oka, H.; Okamura, M. Inorg.
Chim. Acta 1992, 194, 213–217.
(12) (a) Uson, R.; Fornies, J.; Navarro, R. J. Organomet. Chem. 1975, 96,
307–312. (b) Canty, A. J. Acc. Chem. Res. 1992, 25, 83–90.
(13) Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. J. Chem.
Soc., Chem. Commun. 1986, 1722–1724.
(14) (a) Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc.
2005, 127, 12790–12791. (b) Racowski, J. M.; Dick, A. R.; Sanford,
M. S. J. Am. Chem. Soc. 2009, 131, 10974–10983.
(7) Kalyani, D.; Sanford, M. S. Top. Organomet. Chem. 2007, 24, 85–
116.
(15) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142–
15143.
(8) (a) Alibrandi, G.; Minniti, D.; Romeo, R.; Uguagliati, P.; Calligaro,
L.; Belluco, U. Inorg. Chim. Acta 1986, 112, L15–L16. (b) Hill, G. S.;
Rendina, L. M.; Puddephatt, R. J. Organometallics 1995, 14, 4966–
4968. (c) Kalberer, E. W.; Houlis, J. F.; Roddick, D. M. Organome-
tallics 2004, 23, 4112–4115.
(16) (a) Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008, 130, 10060–10061.
(b) Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.;
Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc. 2010, 132, 3793–
3807.
(17) (a) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302–309. (b) Powers,
D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem.
Soc. 2009, 131, 17050–17051.
(9) Stock, L. M.; Tse, K.-T.; Vorvick, L. J.; Walstrum, S. A. J. Org. Chem.
1981, 46, 1757–1759.
(10) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A: Chem. 1996, 108,
35–40.
(18) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234–
11241.
9
J. AM. CHEM. SOC. VOL. 132, NO. 41, 2010 14531