10.1002/chem.201901826
Chemistry - A European Journal
COMMUNICATION
3550–3567; k) K. Zheng, X. Liu, X. Feng, Chem. Rev. 2018, 118,
M.
Tireli,
T.
Mrla,
K.
Užarević,
ChemRxiv.
7586–7656.
[3]
For selected examples see: a) W. Zhuang, T. Hansen, K. A. Jøgensen,
Chem. Commun. 2001, 347–348; b) J. Zhou, Y. Tang, J. Am. Chem.
Soc. 2002, 124, 9030–9031; c) J. Zhou, Y. Tang, Chem. Commun.
2004, 432–433; d) J. Zhou, M.-C. Ye, Z.-Z. Huang, Y. Tang, J. Org.
Chem. 2004, 69, 1309–1320; e) J. Zhou, M.-C. Ye, Y. Tang, J. Comb.
Chem. 2004, 6, 301–304; f) R. Rasappan, M. Hager, A. Gissibl, O.
Reiser, Org. Lett. 2006, 8, 6099–6102. g) A. Schätz, R. Rasappan, M.
Hager, A. Gissibl, O. Reiser, Chem. Eur. J. 2008, 14, 7259–7265; h)
Y.-J. Sun, N. Li, Z.-B. Zheng, L. Liu, Y.-B. Yu, Z.-H. Qin, B. Fu, Adv.
Synth. Catal. 2009, 351, 3113–3117; i) Y. Liu, D. Shang, X. Zhou, X.
Liu, X. Feng, Chem. Eur. J. 2009, 15, 2055–2058; j) Y. Liu, X. Zhou, D.
Shang, X. Liu, X. Feng, Tetrahedron 2010, 66, 1447–1457; k) H. Chen,
F. Du, L. Liu, J. Li, Q. Zhao, B. Fu, Tetrahedron 2011, 67, 9602–9608;
l) J. Wu, D. Wang, F. Wu, B. Wan, J. Org. Chem. 2013, 78, 5611–5617;
m) V. G. Desyatkin, M. V. Anokhin, V. O. Rodionov, I. P. Beletskaya,
Russ. J. Org. Chem. 2016, 52, 1717–1727.
[10] a) J. Yu, Z. Li, K. Jia, Z. Jiang, M. Liu, W. Su, Tetrahedron Lett. 2013,
54, 2006–2009; b) Z. Li, Z. Jiang, W. Su, Green Chem. 2015, 17,
2330–2334; c) Y. Wang, H. Wang, Y. Jiang, C. Zhang, J. Shao, D. Xu,
Green Chem. 2017, 19, 1674–1677.
[11] A full list of reaction conditions and ligands tested can be found in the
Supporting Information.
[12] Replacing the copper salts by other metal salts led to the formation of
rac-3a. For details see the Supporting Information.
[4]
For review articles, see: a) S. L. James, C. J. Adams, C. Bolm, D.
Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W.
Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C.
Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41,
413−447; b) J. G. Hernández, C. Bolm, J. Org. Chem. 2017, 82, 4007–
4019; c) J.-L. Do, T. Friščić, ACS Cent. Sci. 2017, 3, 13–19; d) C. Bolm,
J. G. Hernández, ChemSusChem 2018, 11, 1410–1420; e) D. Tan, T.
Friščić, Eur. J. Org. Chem. 2018, 18–33; f) J.-L. Do, T. Friščić, Synlett
2017, 2066–2092; g) M. Leonardi, M. Villacampa, J. C. Menéndez,
Chem. Sci. 2018, 9, 2042–2064; h) J. L. Howard, Q. Cao, D. L. Browne,
Chem. Sci., 2018, 9, 3080–3094; i) J. G. Hernández, C. Bolm, Angew.
Chem. Int. Ed. 2019, 58, 3285–3299; Angew. Chem. 2019,131, 3320–
3335.
[5]
Recently, IUPAC named "mechanochemistry" to be among the "10
chemistry innovations that will change the world"; see:
innovations-that-will-change-the-world/3010335.article
[6]
[7]
For review articles, see: a) J. G. Hernández, T. Friščić, Tetrahedron
Lett. 2015, 56, 4253–4265; b) T. K. Achar, A. Bose, P. Mal, Beilstein J.
Org. Chem. 2017, 13, 1907–1931.
For selected examples, see: a) N. R. Rightmire, T. P. Hanusa, Dalton
Trans. 2016, 45, 2352–2362; b) J. G. Hernández, N. A. J. Macdonald,
C. Mottillo, I. S. Butler, T. Friščić, Green Chem. 2014, 16, 1087–1092;
c) J. G. Hernández, I. S. Butlerand, T. Friščić, Chem. Sci. 2014, 5,
3576–3582; d) A. Beillard, T.-X. Métro, X. Bantreil, J. Martinez, F.
Lamaty, Chem. Sci. 2017, 8, 1086–1089; e) V. P. Balema, J. W.
Wiench, M. Pruski, V. K. Pecharsky, Chem. Commun. 2002, 1606–
1607; f) D. Braga, D. D’Addari, M. Polito, Organometallics 2004, 23,
2810–2812; g) J. D. Egbert, A. M. Z. Slawin, S. P. Nolan,
Organometallics, 2013, 32, 2271–2274.
[8]
a) J. G. Hernández, C. Bolm, Chem. Commun. 2015, 51, 12582–
12584; b) G. N. Hermann, P. Becker, C. Bolm, Angew. Chem. Int. Ed.
2015, 54, 7414–7417; Angew. Chem. 2015, 127, 7522–7525; c) G. N.
Hermann, C. Bolm, ACS Catal. 2017, 7, 4592–4596; d) G. N. Hermann,
C. L. Jung, C. Bolm, Green Chem. 2017, 19, 2520–2523; e) G. N.
Hermann, P. Becker, C. Bolm, Angew. Chem. Int. Ed. 2016, 55, 3781–
3784; Angew. Chem. 2016, 128, 3845–3848; f) H. Cheng, J. G.
Hernández, C. Bolm, Org. Lett. 2017, 19, 6284–6287; g) H. Cheng, J.
G. Hernández, C. Bolm, Adv. Synth. Catal. 2018, 360, 1800–1804. h) M.
Juribašić, K. Užarević, D. Gracin, M. Ćurić, Chem. Commun. 2014, 50,
10287–10290; i) X. Jiang, J. Chen, W. Zhu, K. Cheng, Y. Liu, W.-K. Su,
C. Yu, J. Org. Chem. 2017, 82, 10665–10672; j) K.-Y. Jia, J.-B. Yu, Z.-J.
Jiang, W.-K. Su, J. Org. Chem. 2016, 81, 6049–6055; k) S.-J. Lou, Y.-J.
Mao, D.-Q. Xu, J.-Q. He, Q. Chen, Z.-Y. Xu, ACS Catal., 2016, 6,
3890–3894; l) A. Bjelopetrović, S. Lukin, I. Halasz, K. Užarević, I.
Đilović, D. Barišić, A. Budimir, M. Juribašić, M. Ćurić, Chem. Eur. J.
2018, 24, 10672–10682; m) Y. Pang, T. Ishiyama, K. Kubota, H. Ito,
Chem. Eur. J. 2019, 25, 4654–4659; n) for a perspective article, see: J.
G. Hernández, Chem. Eur. J. 2017, 23, 17157–17165.
[9]
In mechanochemistry, temperature control still poses practical
challenges. For recent attempts to control thermal conditions upon
milling, see: a) J. Andersen, J. Mack, Angew. Chem. Int. Ed. 2018, 57,
13062–13065; Angew. Chem. 2018, 130, 13246–13249; b) K. Cindro,
This article is protected by copyright. All rights reserved.