C O M M U N I C A T I O N S
ˇ
(c) Smejkal, T.; Breit, B. Angew. Chem., Int. Ed. 2008, 47, 3946. (d) Lu,
Y.; Johnstone, T. C.; Arndtsen, B. A. J. Am. Chem. Soc. 2009, 131, 11284,
and references cited therein.
did not allow for its isolation in pure form or for the determination of
its enantiomeric excess.
The last set of experiments demonstrates that the combination
of hydrogen bonding and oxidation catalysis enables both a regio-
and enantioselective approach to chiral epoxides. As in biological
systems, the substrate is presented to the metal in the catalytically
active site by hydrogen bonds. This principle should be applicable
to other enantioselective reactions and may be further exploited in
organic synthesis.
(7) For artificial metalloenzymes that act by tethering a transition metal to a
host protein via hydrogen bonds, see: (a) Letondor, C.; Humbert, N.; Ward,
T. R. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 4683. (b) Pordea, A.; Creus,
M.; Panek, J.; Duboc, C.; Mathis, D.; Novic, M.; Ward, T. R. J. Am. Chem.
Soc. 2008, 130, 8085, and references cited therein.
(8) (a) Bach, T.; Bergmann, H.; Harms, K. Angew. Chem., Int. Ed. 2000, 39,
2302. (b) Bach, T.; Bergmann, H.; Grosch, B.; Harms, K. J. Am. Chem.
Soc. 2002, 124, 7982. (c) Bauer, A.; Westka¨mper, F.; Grimme, S.; Bach,
T. Nature 2005, 436, 1139. (d) Mu¨ller, C.; Bauer, A.; Bach, T. Angew.
Chem., Int. Ed. 2009, 48, 6640.
(9) (a) Lonergan, G. D.; Riego, J.; Deslongchamps, G. Tetrahedron Lett. 1996,
37, 6109. (b) Lonergan, D. G.; Halse, J.; Deslongchamps, G. Tetrahedron
Lett. 1998, 39, 6865. (c) Lonergan, D. G.; Deslongchamps, G. Tetrahedron
1998, 54, 14041.
Acknowledgment. This project was supported by the Deutsche
Forschungsgemeinschaft (Ba 1372-10), the Universita¨t Bayern e.V.
(Predoctoral Scholarship to C.B.), and the TUM Graduate School.
We thank Wacker-Chemie (Munich) and Umicore (Hanau) for the
donation of chemicals and Dr. S. Huber (TU Mu¨nchen) for
conducting the semiempirical calculations.
(10) Corwin, L. R.; McDaniel, D. M.; Bushby, R. J.; Berson, J. A. J. Am. Chem.
Soc. 1980, 102, 276.
(11) Bauer, A.; Bach, T. Tetrahedron: Asymmetry 2004, 15, 3799.
(12) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16,
4467. (b) Sonogashira, K. In Metal-Catalyzed Cross-Coupling Reactions;
Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 2006;
pp 203-227. (c) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
(13) (a) Groves, J. T.; Myers, R. S. J. Am. Chem. Soc. 1983, 105, 5791. (b)
Mansuy, D.; Battioni, P.; Renaud, J.-P.; Guerin, P. J. Chem. Soc., Chem.
Commun. 1985, 155. (c) Naruta, Y.; Tani, F.; Maruyama, K. Chem. Lett.
1989, 1269. (d) O’Malley, S.; Kodadek, T. J. J. Am. Chem. Soc. 1989,
111, 9116. (e) Collman, J. P.; Zhang, X.; Hembre, R. T.; Brauman, J. I.
J. Am. Chem. Soc. 1990, 112, 5356. (f) Halterman, R. L.; Jan, S.-T. J.
Org. Chem. 1991, 56, 5253. (g) Konishi, K.; Oda, K.-i.; Nishida, K.; Aida,
T.; Inoue, S. J. Am. Chem. Soc. 1992, 114, 1313.
Supporting Information Available: Synthetic procedures for the
preparation of all new compounds; analytical data, including HPLC
traces, proving the ee of 6a and 8; NMR spectra for new compounds,
including 1, 2, 6a, 7, and 8; and further information on the computa-
tional data. This material is available free of charge via the Internet at
(14) For reviews, see: (a) Che, C.-M.; Huang, J.-S. Chem. Commun. 2009, 3996.
(b) Rose, E.; Andrioletti, B.; Zrig, S.; Quelquejeu-Ethe`ve, M. Chem. Soc.
ReV. 2005, 34, 573. (c) Meunier, B. Chem. ReV. 1992, 92, 1411.
(15) Liddell, P. A.; Gervaldo, M.; Bridgewater, J. W.; Keirstead, A. E.; Lin, S.;
Moore, T. A.; Moore, A. L.; Gust, D. Chem. Mater. 2008, 20, 135.
(16) For functionalization of porphyrins, see: Senge, M. O.; Shaker, Y. M.;
Pintea, M.; Ryppa, C.; Hatscher, S. S.; Ryan, A.; Sergeeva, Y. Eur. J.
Org. Chem. 2010, 237.
References
(1) van Leeuwen, P. W. N. P. Supramolecular Catalysis; Wiley-VCH:
Weinheim, Germany, 2008.
(2) (a) Mansuy, D. Pure Appl. Chem. 1987, 59, 759. (b) Mansuy, D. Pure
Appl. Chem. 1994, 66, 737. (c) Feiters, M. C.; Rowan, A. E.; Nolte, R. J. M.
Chem. Soc. ReV. 2000, 29, 375. (d) Meunier, B. Biomimetic Oxidations
Catalyzed by Transition Metal Complexes; Imperial College Press: London,
2000. (e) Groves, J. T. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3569.
(3) Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism, and
Biochemistry, 3rd ed.; Kluwer: New York, 2005.
(17) For a review of ruthenium porphyrin complexes, see: Simmoneaux, G.;
Le Maux, P. Coord. Chem. ReV. 2002, 228, 43.
(18) Higuchi, T.; Ohtake, H.; Hirobe, M. Tetrahedron Lett. 1989, 30, 6545.
(19) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. (b) Hoye,
T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451.
(4) (a) Breslow, R.; Zhang, X.; Huang, Y. J. Am. Chem. Soc. 1997, 119, 4535.
(b) Yang, J.; Breslow, R. Angew. Chem., Int. Ed. 2000, 39, 2692. (c) Fang,
Z.; Breslow, R. Org. Lett. 2006, 8, 251. (d) Das, S.; Incarvito, C. D.;
Crabtree, R. H.; Brudvig, G. W. Science 2006, 312, 1941. (e) Das, S.;
Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc. 2008, 130, 1628. (f)
Lee, S. J.; Cho, S.-H.; Mulfort, K. L.; Tiede, D. M.; Hupp, J. T.; Nguyen,
S. T. J. Am. Chem. Soc. 2008, 130, 16828. (g) Hull, J. F.; Sauer, E. L. O.;
Incarvito, C. D.; Faller, J. W.; Brudvig, G. W.; Crabtree, R. H. Inorg. Chem.
2009, 48, 488.
(5) For a review, see: Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2006, 45, 1520.
(6) For recent studies of the directing effect of hydrogen bonds in transition-
metal-catalyzed reactions, see: (a) Jo´nsson, S.; Odille, F. G. J.; Norrby,
P.-O.; Wa¨rnmark, K. Chem. Commun. 2005, 549. (b) Jo´nsson, S.; Odille,
F. G. J.; Norrby, P.-O.; Wa¨rnmark, K. Org. Biomol. Chem. 2006, 4, 1927.
(20) Substrate dimerization is expected to occur in competition with substrate
association to the catalyst. The dimerization constant of substrate 5a at
room temperature in toluene can be estimated as Kdim ≈ 900 M-1 on the
basis of earlier measurements (see: Selig, P.; Bach, T. J. Org. Chem. 2006,
71, 5662–5673). Further association studies have not yet been undertaken.
(21) For the depicted model, a dioxoRu(VI) intermediate was assumed. Recent
studies have suggested oxoRu(V) species as key intermediates in oxygen-
ation and epoxidation processes (see: Wang, C.; Shalyaev, K. V.; Bonchio,
M.; Carofiglio, T.; Groves, J. T. Inorg. Chem. 2006, 45, 4769). In this
case, the second axial substituent would be a ligand but not an oxygen
atom. The conclusions drawn from the model remain the same, however.
JA107601K
9
J. AM. CHEM. SOC. VOL. 132, NO. 45, 2010 15913