2856
S. Basu et al. / Inorganica Chimica Acta 363 (2010) 2848–2856
(g) R.I. Maurer, P.J. Blower, J.R. Dilworth, C.A. Reynolds, Y. Zheng, G.E.D. Mullen,
J. Med. Chem. 45 (2002) 1420;
potential of the reversible Ir(III)–Ir(IV) oxidation in the 3-R and 4-
R complexes has been found to be sensitive to the nature of the
substituent R. The potential increases with increasing electron-
withdrawing character of the substituent R. The plots of oxidation
(h) J. Patole, S. Dutta, S.B. Padhye, E. Sinn, Inorg. Chim. Acta 318 (2001) 207;
(i) Z. Iakovidou, A. Papageorgiou, M.A. Demertzis, E. Mioglou, D. Mourelatos, A.
Kotsis, P.N. Yadav, D. Kovala-Demertzi, Anticancer Drugs 12 (2001) 65.
[3] (a) S. Dutta, F. Basuli, A. Castineiras, S.M. Peng, G.H. Lee, S. Bhattacharya, Eur. J.
Inorg. Chem. (2008) 4538;
potential versus
r
[
r
= Hammett constant of
R
[17]];
OCH3 = ꢀ0.27, CH3 = ꢀ0.17, H = 0.00, Cl = 0.23 and NO2 = 0.78] are
(b) S. Halder, S.M. Peng, G.H. Lee, T. Chatterjee, A. Mukherjee, S. Dutta, U.
Sanyal, S. Bhattacharya, New J. Chem. 32 (2008) 105;
(c) S. Halder, R.J. Butcher, S. Bhattacharya, Polyhedron 26 (2007) 2741;
(d) S. Basu, R. Acharyya, W.S. Sheldrick, H. Mayer-Figge, S. Bhattacharya, Struct.
Chem. 18 (2007) 209;
linear for both the [Ir(PPh3)2(CNS-R)(H)] and [Ir(PPh3)2(CNS-R)Cl]
complexes (Figs. S5 and S6) with slopes (
q) of 0.33 V and 0.27 V,
respectively ( = reaction constant of this couple [18]). This shows
q
that the para-substituent (R) on the thiosemicarbazone ligand,
which is four-bonds away from the metal center, can still influence
the metal-centered oxidation potential in a predictable manner.
(e) R. Acharyya, S. Dutta, F. Basuli, S.M. Peng, G.H. Lee, Larry R. Falvello, S.
Bhattacharya, Inorg. Chem. 45 (2006) 1252;
(f) S. Dutta, F. Basuli, S.M. Peng, G.H. Lee, S. Bhattacharya, New J. Chem. 26
(2002) 1607;
(g) I. Pal, F. Basuli, T.C.W. Mak, S. Bhattacharya, Angew. Chem., Int. Ed. 40
(2001) 2923;
(h) F. Basuli, S.M. Peng, S. Bhattacharya, Inorg. Chem. 39 (2000) 1120;
(i) F. Basuli, M. Ruf, C.G. Pierpont, S. Bhattacharya, Inorg. Chem. 37 (1998)
6113;
4. Conclusions
The present study shows that [Ir(PPh3)3Cl] can successfully
mediate both S-H and C-H activation of the 4-R-benzaldehyde
thiosemicarbazones (I). However, the nature of complexes formed
depends largely on the experimental factors. The present study
also indicates that such bond activation of some other organic mol-
ecules, that have structural similarity with the benzaldehyde thio-
semicarbazone, may be brought about by their reaction with
[Ir(PPh3)3Cl], and such possibilities are currently under
exploration.
(j) F. Basuli, S.M. Peng, S. Bhattacharya, Inorg. Chem. 36 (1997) 5645.
[4] (a) Y.P. Tian, C.Y. Duan, Z.L. Lu, X.Z. You, H.K. Fun, K. Sivakumar, Polyhedron 15
(1996) 2263;
(b) S. Halder, R. Acharyya, F. Basuli, S.M. Peng, G.H. Lee, S. Bhattacharya,
unpublished results.
[5] (a) O. Daugulis, H.Q. Do, D. Shabashov, Acc. Chem. Res. 42 (2009) 1074;
(b) N.A. Foley, J.P. Lee, Z. Ke, T.B. Gunnoe, T.R. Cundari, Acc. Chem. Res. 42
(2009) 585;
(c) B.H. Lipshutz, Y. Yamamoto, Chem. Rev. 108 (2008) 2793;
(d) W. Leis, H.A. Mayer, W.C. Kaska, Coord. Chem. Rev. 252 (2008) 1787;
(e) J.C. Lewis, R.G. Bergman, J.A. Ellman, Acc. Chem. Res. 41 (2008) 1013;
(f) Y.J. Park, J.W. Park, C.H. Jun, Acc. Chem. Res. 41 (2008) 222;
(g) M. Lersch, M. Tilset, Chem. Rev. 105 (2005) 2471;
(h) E. Carmona, M. Paneque, L.L. Santos, V. Salazar, Coord. Chem. Rev. 249
(2005) 1729;
Acknowledgements
The authors thank the reviewers for their constructive com-
ments, which have been helpful in preparing the revised manu-
script. Financial assistance received from the UGC-CAS Program
of the Department of Chemistry, Jadavpur University, is gratefully
acknowledged. The authors thank the RSIC at Central Drug Re-
search Institute, Lucknow, India, for the C, H, N analysis data, and
the Department of Chemistry, Indian Institute of Technology, Kan-
pur, India, for the X-ray diffraction data of the 4-CH3 complex.
(i) T. Mallat, A. Baiker, Chem. Rev. 104 (2004) 3037;
(j) H.Y. Jang, M.J. Krische, Acc. Chem. Res. 37 (2004) 653.
[6] (a) S. Basu, I. Pal, R.J. Butcher, G. Rosair, S. Bhattacharya, J. Chem. Sci. 117
(2005) 167;
(b) R. Acharyya, F. Basuli, R.Z. Wang, T.C.W. Mak, S. Bhattacharya, Inorg. Chem.
43 (2004) 704.
[7] (a) D.T. Sawyer, J.L. Roberts Jr., Experimental Electrochemistry for Chemists,
Wiley, New York, 1974;
(b) M. Walter, L. Ramaley, Anal. Chem. 45 (1973) 165.
[8] Chemical shifts are given in ppm and multiplicity of the signals along with the
associated coupling constants (J in Hz) are given in parentheses. Overlapping
signals are marked with an asterisk.
[9] G.M. Sheldrick, SHELXS-97 and SHELXL-97, Fortran programs for crystal structure
solution and refinement, University of Gottingen, 1997.
[10] The first red product refers to the product obtained from evaporation of the
first red fraction from the chromatography. Similarly the product obtained
from evaporation of the second red fraction is referred to as the second red
product.
Appendix A. Supplementary data
CCDC 761128, 761129 and 761130 contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
associated with this article can be found, in the online version, at
[11] (a) G. Canepa, E. Sola, M. Martin, F.J. Lahoz, L.A. Ora, H. Werner,
Organometallics 22 (2003) 2151;
(b) K.K.W. Lo, C.K. Chung, D.C.M. Ng, N. Zhu, New J. Chem. 26 (2002) 81;
(c) D.A. Ortmann, B. Weberndorfer, K. Ilg, M. Laubender, H. Werner,
Organometallics 21 (2002) 2369;
(d) F. Torres, E. Sola, M. Martin, C. Ochs, G. Picazo, J.A. Lopez, F.J. Lahoz, L.A. Oro,
Organometallics 20 (2001) 2716;
References
(e) H. Werner, A. Heohn, M. Schulz, Dalton Trans. (1991) 777.
[12] The first yellow product refers to the product obtained from evaporation of the
first yellow fraction from the chromatography. Similarly the product obtained
from evaporation of the second yellow fraction is referred to as the second
yellow product.
[13] (a) D.A. Vicic, W.D. Jones, Organometallics 18 (1999) 134;
(b) R. McDonald, M. Cowie, Inorg. Chem. 32 (1993) 1671;
(c) L. Carlton, J.J. Molapisi, J. Organomet. Chem. 609 (2000) 60.
[14] (a) H.D. Empsall, S. Johnson, B.L. Shaw, Dalton Trans. (1980) 302;
(b) H.D. Empsall, E.M. Hyde, E. Mentzer, B.L. Shaw, M.F. Uttley, J. Chem. Soc. (A)
(1976) 2069;
(c) J. Chatt, N.P. Johnson, B.L. Shaw, J. Chem. Soc. (A) (1964) 1625.
[15] The evolved hydrogen could not be detected.
[16] (a) C. Mealli, D.M. Proserpio, CACAO Version 4.0, Italy, 1994.;
(b) C. Mealli, D.M. Proserpio, J. Chem. Educ. 67 (1990) 399.
[17] L.P. Hammett, Physical Organic Chemistry, second ed., McGraw Hill, New York,
1970.
[1] (a) T.S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009)
977;
(b) A.G. Quiroga, C.N. Raninger, Coord. Chem. Rev. 248 (2004) 119;
(c) J.R. Dilwarth, P. Amold, D. Morales, Y.L. Wong, Y. Zheng, Mod. Coord. Chem.
(2002) 217;
(d) D.X. West, A.E. Liberta, S.B. Padhye, R.C. Chikate, P.B. Sonawane, A.S.
Kumbhar, R.G. Yerande, Coord. Chem. Rev. 123 (1993) 49;
(e) D.X. West, S.B. Padhye, P.B. Sonawane, Struct. Bonding 76 (1992) 1;
[f] I. Haiduc, C. Silvestru, Coord. Chem. Rev. 99 (1990) 253;
(g) S.B. Padhye, G.B. Kaffman, Coord. Chem. Rev. 63 (1985) 127;
(h) M.J.M. Campbell, Coord. Chem. Rev. 15 (1975) 279.
[2] (a) A.C.F. Caires, Anticancer Agents Med. Chem. 7 (2007) 484;
(b) T. Wang, Z. Guo, Curr. Med. Chem. 13 (2006) 525;
(c) H. Beraldo, D. Gambino, Min. Rev. Med. Chem. 4 (2004) 31;
(d) E.M. Jouad, X.D. Thanh, G. Bouet, S. Bonneau, M.A. Khan, Anticancer Res. 22
(2002) 1713;
(e) M.B. Ferrari, F. Bisceglie, G. Pelosi, M. Sassi, P. Tarasconi, M. Cornia, S.
Capacchi, R. Albertini, S. Pinelli, J. Inorg. Biochem. 90 (2002) 113;
(f) A.R. Cowly, J.R. Dilworth, P.S. Donnely, E. Labisbal, A. Sousa, J. Am. Chem.
Soc. 124 (2002) 5270;
[18] R.N. Mukherjee, O.A. Rajan, A. Chakravorty, Inorg. Chem. 21 (1982)
785.