were observed with many dipolarophiles (i.e., R,ꢀ-unsatur-
ated esters, maleimides, R,ꢀ-unsaturated nitriles, enals,
nitroalkenes, vinyl sulfones, and fullerene), the cycloaddition
of azomethine ylides with enones, in particular cyclic
R-enones, is still rarely explored and remains a great
challenge.9 It was not until very recently that Carretero and
co-workers10 reported the first catalytic asymmetric cycload-
dition of azomethine ylides with R,ꢀ-unsaturated ketones
catalyzed by 5 mol % of CuI/Fesulphos complex. In their
research, endo-cycloadducts for 2-cyclopentenone were
obtained as a major isomer in moderate to good endo/exo
selectivities (endo/exo ) 75/25 to 98/2) and 85-95% ee,
while exo-selectivity (endo/exo ) 40/60 to 98/2) with
81-96% ee for acyclic R-enones was observed. A limitation
of this catalytic system lies in very low activity for a six-
membered cyclic enone such as 2-cyclohexenone. Najera
et al.5d reported that a chiral Ag(I)/phosphoramidite complex
could catalyze the cycloaddition of azomethine ylides with
cyclopentenone and acyclic enones, providing endo-adducts
in moderate to good endo/exo selectivities and enantiose-
lectivities. More recently, Fukuzawa et al.11 found that the
Ag/ThioClickFerrophos complex could catalyze the highly
endo-selective 1,3-dipolar cycloaddition reaction of azome-
thine ylides with acyclic R-enones, having an endo/exo ratio
of 90/10 to 99/1 and ee values of 87-98%. However, this
catalyst was less efficient for the reaction of azomethine
ylides with cyclic enone such as 2-cyclopentenone since a
long reaction time (24 h) and a high catalyst loading (10
mol %) were required, although the endo-cycloadduct was
obtained as the sole isomer in 98% ee and 73% yield. The
development of new, well-designed chiral ligands with high
diastereo-/enantioselectivities and a broad substrate scope for
the enantioselective cycloaddition of azomethine ylides with
R,ꢀ-unsaturated ketones, under low catalyst loadings and
mild reaction conditions, is therefore of great interest.
Recently, Chan et al. have reported a new ferrocenyl P/S
ligand 1, which showed good enantioselectivities in the Pd-
catalyzed asymmetric allylic alkylation (Figure 1).12 We
(3) Reviews on catalytic asymmetric 1,3-dipolar cycloadditon: (a) Engels,
B.; Christl, M. Angew. Chem., Int. Ed. 2009, 48, 7968–7970. (b) Stanley,
´
L. M.; Sibi, M. P. Chem. ReV. 2008, 108, 2887–2902. (c) Alvarez-Corral,
M.; Mun˜oz-Dorado, M.; Rodr´ıguez-Garc´ıa, I. Chem. ReV. 2008, 108, 3174–
3198. (d) Naodovic, M.; Yamamoto, H. Chem. ReV. 2008, 108, 3132–3148.
(e) Pellissier, H. Tetrahedron 2007, 63, 3235–3285. (f) Nair, V.; Suja, T. D.
Tetrahedron 2007, 63, 12247–12275. (g) Pandey, G.; Banerjee, P.; Gadre,
S. R. Chem. ReV. 2006, 106, 4484–4517. (h) Na´jera, C.; Sansano, J. M.
Angew. Chem., Int. Ed. 2005, 44, 6272–6276. (i) Husinec, S.; Savic, V.
Tetrahedron: Asymmetry 2005, 16, 2047–2061.
(4) For recent examples on Cu catalysts: (a) Robles-Machin, R.;
Gonza´lez-Esguevillas, M.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2010,
75, 233–236. (b) Lo´pez-Pe´rez, A.; Adrio, J.; Carretero, J. C. Angew. Chem.,
Int. Ed. 2009, 48, 340–343. (c) Lo´pez-Pe´rez, A.; Adrio, J.; Carretero, J. C.
J. Am. Chem. Soc. 2008, 130, 10084–10085. (d) Wang, C.-J.; Liang, G.;
Xue, Z.-Y.; Gao, F. J. Am. Chem. Soc. 2008, 130, 17250–12751. (e) Llamas,
T.; Ramo´n Go´mez, A.; Carretero, J. C. Synthesis 2007, 950–956. (f) Cabrera,
S.; Go´mez Arraya´s, R.; Mart´ın-Matute, B.; Coss´ıo, F. P.; Carretero, J. C.
Tetrahedron 2007, 63, 6587–6602. (g) Shi, M.; Shi, J.-W. Tetrahedron:
Asymmetry 2007, 18, 645–650. (h) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang,
K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45,
1979–1983. (i) Cabrera, S.; Arraya´s, R. G.; Carretero, J. C. J. Am. Chem.
Soc. 2005, 127, 16394–16395. (j) Gao, W.; Zhang, X.; Raghunath, M. Org.
Lett. 2005, 7, 4241–4244.
Figure 1. Structure of Chan’s ligand 1 and (Rc,SFc)-ImiFerroS 2.
(5) For recent examples on Ag Catalysts: (a) Yamashita, Y.; Guo, X.-
X.; Takashita, R.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 3262–3263.
(b) Xie, Z.-Y.; Liu, T.-L.; Lu, Z.; Huang, H.; Tao, H.-Y.; Wang, C.-J. Chem.
Commun. 2010, 46, 1727–1729. (c) Robles-Mach´ın, R.; Alonso, I.; Adrio,
J.; Carretero, J. C. Chem.sEur. J. 2010, 16, 5286–5291. (d) Na´jera, C.;
Retamosa, M. G.; Mart´ın-Rodr´ıguez, M.; Sansano, J. M.; Co´zar, A.; Coss´ıo,
F. P. Eur. J. Org. Chem. 2009, 5622–5634. (e) Yu, S.-B.; Hu, X.-P.; Deng,
J.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. Tetrahedron: Asymmetry 2009,
20, 621–625. (f) Wang, C.-J.; Xue, Z.-Y.; Liang, G.; Lu, Z. Chem. Comumm.
2009, 2905–2907. (g) Liang, G.; Tong, M,-C.; Wang, C.-J. AdV. Synth.
Catal. 2009, 351, 3101–3106. (h) Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li,
Y.-X. J. Am. Chem. Soc. 2007, 129, 750–751. (i) Zeng, W.; Zhou, Y.-G.
Tetrahedron Lett. 2007, 48, 4619–4622. (j) Na´jera, C.; Retamosa, M. D. G.;
Sansano, J. M. Org. Lett. 2007, 9, 4025–4028. (k) Garner, P.; Kaniskan,
envision that these new ligands may also be efficient for the
catalytic asymmetric cycloaddition of azomethine ylides with
cycloenones because of the good performance of chiral
ferrocenyl P,S-ligands in the catalytic asymmetric [3 + 2]
cycloaddition. However, the results proved to be highly
disappointing, and only very low enantioselectivity (26% ee
for endo-adducts) was achieved in the Cu-catalyzed [3 + 2]
cycloaddition of N-(4-chlorobenzylidene)glycine methyl ester
(5a) with 2-cyclopentenone (6a) (entry 1, Table 1). By
reversing the position of P- and S-donor atoms, herein we
report a new family of chiral ferrocenyl P,S-ligands [(Rc,SFc)-
ImiFerroS 2] for the highly endo-selective catalytic asym-
metric cycloaddition of azomethine ylides with various
enones, including cyclic and acyclic R-enones, in which
excellent diastereo-/enantioselectivities (only endo-cycload-
ducts with normally >99% ee for cyclic R-enones) were
achieved for a broad scope of azomethine ylides.
¨
H. U.; Hu, J.; Youngs, W. J.; Panzner, M. Org. Lett. 2006, 8, 3647–3650.
(l) Nyerges, M.; Bendell, D.; Arany, A.; Hibbs, D. E.; Coles, S. J.;
Hursthouse, M. B.; Groundwater, P. W.; Meth-Cohn, O. Tetrahedron 2005,
61, 3745–3753. (m) Zeng, W.; Zhou, Y.-G. Org. Lett. 2005, 7, 5055–5058.
(n) Alemparte, C.; Blay, G.; Jørgensen, K. A. Org. Lett. 2005, 7, 4569–
4572.
¨
(6) For recent examples on zinc catalysts: (a) Dogan, O.; Koyuncu, H.;
Garner, P.; Bulut, A.; Youngs, W. J.; Panzner, M. Org. Lett. 2006, 8, 4687–
¨
¨
¨
4690. (b) Dogan, O.; Oner, I.; Ulku¨, D.; Arici, C. Tetrahedron: Asymmetry
2002, 13, 2099–2104.
(7) For recent example on nickel catalysts: Shi, J.-W.; Zhao, M.-X.;
Lei, Z.-Y.; Shi, M. J. Org. Chem. 2008, 73, 305–308.
(8) For recent examples on organocatalysts: (a) Liu, Y. K.; Liu, H.; Du,
W.; Yue, L.; Chen, Y.-C. Chem.sEur. J. 2008, 14, 9873–9877. (b) Xue,
M.-X.; Zhang, X.-M.; Gong, L.-Z. Synlett 2008, 691–694. (c) Chen, X.-
H.; Zhang, W.-Q.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 5652–5654.
(d) Ibrahem, I.; R´ıos, R.; Vesely, J.; Co´rdova, A. Tetrahedron Lett. 2007,
48, 6252–6257. (e) Vicario, J. L.; Reboredo, S.; Bad´ıa, D.; Carrillo, L.
Angew. Chem., Int. Ed. 2007, 46, 5168–5170.
The modular synthesis of these new chiral ferrocenyl P,S-
ligands is outlined in Scheme 1. In the first step, N,N-dimethyl
(11) Oura, I.; Shimizu, K.; Ogata, K.; Fukuzawa, S. Org. Lett. 2010,
12, 1752–1755.
(12) (a) Cheung, H. Y.; Yu, W.-Y.; Lam, F. L.; Au-Yeung, T. T.-L.;
Zhou, Z.; Chan, T. H.; Chan, A. S. C. Org. Lett. 2007, 9, 4295–4298. (b)
Cheung, H. Y.; Yu, W.-Y.; Au-Yeung, T. T.-L.; Zhou, Z.; Chan, A. S. C.
AdV. Synth. Catal. 2009, 351, 1412–1422.
(9) Grigg, R. Tetrahedron: Asymmetry 1995, 6, 2475–2486.
(10) Herna´ndez-Toribio, J.; Go´mez Arraya´s, R.; Mart´ın-Matute, B.;
Carretero, J. C. Org. Lett. 2009, 11, 393–396.
Org. Lett., Vol. 12, No. 23, 2010
5543