Rashatasakhon et al.
COMMUNICATION
DI-TOF) Calcd for C51H31N: 657.2.
Found: 657.1. Anal. Calcd for
C51H31N: C 93.12, H 4.75, N 2.13.
Found: C 93.22, H 4.81, N 1.93.
Characterization data for 2: 1H NMR
(CDCl3): d=8.38 (s, 4H), 8.10–8.14
(m, 8H), 7.88–8.00 (m, 24H), 7.73 (d,
J=9.32 Hz, 4H), 7.67 (d, J=8.36 Hz,
4H), 7.44 (d, J=8.40 Hz, 4H), 5.11 (s,
4H), 4.55 ppm (s, 4H). 13C NMR
(CDCl3): d=168.5, 140.3, 138.0, 133.2,
131.4, 130.8, 130.2, 129.1, 128.6, 128.0,
127.3, 127.2, 127.1, 125.8, 125.3, 124.8,
Scheme 4. Band diagrams for devices V–VII.
124.6, 124.5, 123.6, 122.6, 108.4, 62.9,
44.8 ppm. MS(MALDI-TOF) Calcd
for C94H56N2O4: 1277.5 Found: 1277.6. Anal. Calcd for C94H56N2O4:
C 88.38, H 4.42, N 2.19. Found: C 88.58, H 3.96, N 2.11.
Characterization data for 3: 1H NMR (CDCl3): d=8.44 (s, 2H), 8.32 (d,
J=9.10 Hz, 2H), 8.26 (d, J=7.54 Hz, 2H), 8.23–8.07 (m, 10H), 8.06–7.95
(m, 4H), 7.73 (dd, J=22.42, 8.33 Hz, 4H), 7.61 (d, J=7.79 Hz, 1H),
7.45–7.06 ppm (m, 12H). 13C NMR (CDCl3): d=147.6, 147.4, 141.0, 138.5,
133.2, 131.6, 131.3, 131.1, 130.4, 129.4, 129.0, 128.9, 128.2, 127.9, 127.5,
127.4, 127.2, 126.0, 125.7, 125.1, 125.0, 124.9, 124.7, 124.7, 124.1, 123.6,
122.7, 122.4, 109.9 ppm. MS(MALDI-TOF) Calcd for C62H38N2: 810.1.
Found: 810.4. Anal. Calcd for C62H38N2: C 91.82, H 4.72, N 3.45. Found:
C 91.51, H 4.51, N 3.53.
Acknowledgements
This work is financially supported by the Thailand Research Fund (TFR-
MRG5080197), a research grant (NN-B-22-FN9–10–52–06) from the Na-
tional Nanotechnology Center, and the Faculty of Science, Chulalong-
korn University. T.K. thanks the Center for Petroleum, Petrochemicals
and Advanced Material, Chulalongkorn University for a scholarship. P.R.
thanks Prof. Thawatchai Tuntulani for valuable advice and information.
Keywords: carbazole · electroluminescence · fluorescence ·
organic light emitting diodes · pyrenes
Figure 4. The I-V-L curve of devices V–VII with 1–3 as hole-transporting
materials (ITO/HTM/Alq3/LiF/Al).
d) A. J. Heeger, Chem. Soc. Rev. 2010, DOI:10.1039/b914956m.
[3] a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K.
49, 1–149; c) J. Morgado, F. Cacialli, J. Grꢁner, N. C. Greenham,
blue to green region with high quantum efficiencies of over
70% in the solution phase, and strong luminescence in the
solid-phase thin film. All of these compounds were thermal-
ly stable and possessed high glass-transition temperatures,
well above 1608C. Most importantly, these compounds
showed promising potential as either blue-light-emitting ma-
terials or hole-transporting materials for Alq3-based
OLEDs. Further studies on multi-layered device and device
optimization are currently underway.
Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes,
[5] K. Mꢁllen, U. Scherf in Organic Light Emitting Devices: Synthesis
Properties and Applications, Wiley-VCH, Weinheim 2006.
Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong,
Experimental Section
Characterization data for 1: 1H NMR (CDCl3): d=8.37 (s, 2H), 8.25 (d,
J=9.2 Hz, 2H), 8.18 (d, J=7.6 Hz, 2H), 8.02–8.13 (m, 10H), 7.91–7.96
(m, 4H), 7.44 (d, J=8.40 Hz, 2H), 7.56–7.60 (m, 4H), 7.45 (d, J=8.0 Hz
4H), 2.49 ppm (s, 3H). 13C NMR (CDCl3): d=140.9, 138.5, 137.7, 133.1,
131.6, 131.1, 130.7, 130.4, 129.0, 128.2, 127.5, 127.4, 127.2, 127.1, 125.9,
125.7, 125.0, 124.7, 124.6, 123.5, 122.4, 120.4, 109.9, 21.3 ppm. MS(MAL-
[7] K. R. J. Thomas, J. T. Lin, Y.-T. Tao, C.-W. Ko, J. Am. Chem. Soc.
2001, 123, 9404–9411.
2166
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Asian J. 2010, 5, 2162 – 2167