10.1002/cssc.201700421
ChemSusChem
FULL PAPER
(CDCl3, 75 MHz, ppm): δ 182.4, 156.5, 155.1, 150.0, 140.8, 139.9, 137.7,
127.2, 127.1, 124.2, 122.3, 119.3, 114.9, 55.5.
Acknowledgements
(c)
Financial support provided by the Ministry of Science and
Technology (MOST), Taiwan (MOST 103-2113-M-008-009-MY2)
and the National Central University (NCU) are gratefully
acknowledged. We also thank the staffs of Research Center for
New Generation Photovoltaics (RCNPV, NCU) for giving helpful
advices and guidance on the fabrication and characterization of
dye-sensitized solar cells.
Figure 1. Photovoltaic characteristics of CYL-5, CYL-6, and CYL-7:
(a) photocurrent density vs. photovoltage; (b) Incident photon-to-
current conversion efficiency (IPCE); (c) electrochemical impedance
spectroscopy (EIS).
Keywords: Copper • Direct C-H Arylations • Dye-Sensitized
Solar Cells (DSSCs) • Sn- & Pd-Free Process
[1]
[2]
[3]
S. Chaurasia, J. T. Lin, Chem. Rec. 2016, 16, 1311-1336.
Y. Wu, W. Zhu, Chem. Soc. Rev. 2013, 42, 2039-2058.
A. Mishra, M. K. Fischer, P. Bäuerle, Angew. Chem. Int. Ed. 2009, 48,
2474-2499.
Conclusions
Unlike the traditional synthetic approaches for organic
electronics, we demonstrate herein a step-economical, Pd and
Sn-free new synthetic pathway to access various DA type
dye molecules employing inexpensive CuCl2 as catalyst. We find
that, after reaction condition optimizations, most desired
products targeting on dye-sensitized solar cells (DSSCs)
applications can be isolated in good to excellent yields (total 32
examples). Based on this Cu-catalyzed C-H arylation
methodology, new sensitizers (CYL-5~7) are facilely obtained
and fabricated as DSSCs devices. One of them (CYL-7) can
reach the power conversion efficiency (PCE) of 6.20%. We
expect this relatively greener synthetic protocol would turn into a
viable alternative for the efficient preparation of small-molecule
-functional materials.
[4]
[5]
B. G. Kim, K. Chung, J. Kim, Chem. Eur. J. 2013, 19, 5220-5230.
G. Tian, S. Cai, X. Li, H. Å gren, Q. Wang, J. Huang, J. Su, J. Mater.
Chem. A 2015, 3, 3777-3784.
[6]
[7]
J. Yang, P. Ganesan, J. Teuscher, T. Moehl, Y. J. Kim, C. Yi, P. Comte,
K. Pei, T. W. Holcombe, M. K. Nazeeruddin, J. Hua, S. M. Zakeeruddin,
H. Tian, M. Grätzel, J. Am. Chem. Soc. 2014, 136, 5722-5730.
N. Zhou, K. Prabakaran, B. Lee, S. H. Chang, B. Harutyunyan, P. Guo,
M. R. Butler, A. Timalsina, M. J. Bedzyk, M. A. Ratner, S. Vegiraju, S.
Yau, C. G. Wu, R. P. Chang, A. Facchetti, M. C. Chen, T. J. Marks, J.
Am. Chem. Soc. 2015, 137, 4414-4423.
[8]
[9]
L. L. Tan, J. F. Huang, Y. Shen, L. M. Xiao, J. M. Liu, D. B. Kuang, C.Y.
Su, J. Mater. Chem. A 2014, 2, 8988-8994.
S. Tamba, R. Fujii, A. Mori, K. Hara, N. Koumura, Chem. Lett. 2011, 40,
922-924.
[10] D. J. Schipper, K. Fagnou, Chem. Mater. 2011, 23, 1594-1600.
[11] J. Zhang, W. Chen, A. J. Rojas, E. V. Jucov, T. V. Timofeeva, T. C.
Parker, S. Barlow, S. R. Marder, J. Am. Chem. Soc. 2013, 135, 16376-
16379.
[12] K. Okamoto, J. Zhang, J. B. Housekeeper, S. R. Marder, C. K.
Luscombe, Macromolecules 2013, 46, 8059-8078.
[13] X. Kang, J. Zhang, D. O’Neil, A. J. Rojas, W. Chen, P. Szymanski, S. R.
Marder, M. A. El-Sayed, Chem. Mater. 2014, 26, 4486-4493.
[14] P. H. Lin, T. J. Lu, D. J. Cai, K. M. Lee, C. Y. Liu, ChemSusChem 2015,
8, 3222-3227.
Experimental Section
Representative procedure for the Cu-catalyzed C-H arylation of 2-
thiophenecarboxaldehyde
(2a)
with
4-iodo-N,N-bis(4-
methoxyphenyl)aniline (1e) ─ Synthesis and characterization of
product 3e: To a solution of CuCl2 (40 mg, 0.30 mmol), phenanthroline
(54 mg, 0.30 mmol), Cs2CO3 (652 mg, 2.00 mmol) in the co-solvent of
N,N′-dimethylpropylene urea (DMPU) and m-xylene (total 2 mL, v/v =
[15] L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48,
9792-9826.
[16] S. I. Kozhushkov, H. K. Potukuchi, L. Ackermann, Catal. Sci. Technol.
2013, 3, 562-571.
1:1) in
a flame-dried Schlenk tube were added 4-iodo-N,N-bis(4-
[17] S. Tokuji, H. Awane, H. Yorimitsu, A. Osuka, Chem. Eur. J. 2013, 19,
64-68.
methoxyphenyl)aniline (1e) (862 mg, 2.00 mmol) and 2-
thiophenecarboxaldehyde (2a) (112 mg, 1.00 mmol) under N2. The
reaction mixture was then heated at 120 °C under N2 for 24 h. After the
reaction mixture had cooled to room temperature, water (10 mL) was
added. The mixture was extracted with ethyl acetate (2 × 30 mL), and the
combined organic layers were washed with brine (50 mL), dried (Na2SO4)
and concentrated in vacuo. Purification by flash chromatography (ethyl
acetate : hexanes = 20 : 80) yielded the pure product 3e (378 mg, 91 %).
Red viscous liquid. 1H NMR (CDCl3, 300 MHz, ppm): δ 9.82 (s, 1 H), 7.67
(d, J = 4.0 Hz, 1 H), 7.46 (d, J = 8.8 Hz, 2 H), 7.25 (d, J = 4.0 Hz, 1 H),
7.05-7.15 (comp, 4 H), 6.80-6.97 (comp, 6 H), 3.81 (s, 6 H); 13C NMR
[18] H. Yorimitsu, A. Osuka, Asian J. Org. Chem. 2013, 2, 356-373.
[19] T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169.
[20] X. Chen, K. M. Engle, D. H. Wang, J. Q. Yu, Angew. Chem. Int. Ed.
2009, 48, 5094-5115.
[21]
J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012,
51, 8960-9009.
[22] Y.-T. Song, P.-H. Lin, C.-Y. Liu, Adv. Synth. Catal. 2014, 356, 3761-
3768.
[23] Z. Iqbal, W.-Q. Wu, Z.-S. Huang, L. Wang, D.-B. Kuang, H. Meier, D.
Cao, Dyes Pigm. 2016, 124, 63-71.
This article is protected by copyright. All rights reserved.