5986
D. Mullick et al. / Tetrahedron Letters 51 (2010) 5984–5987
Table 3
selectively from products containing acid-sensitive groups such
as tert-butyl ester, enol ether, tert-butyl carbamate, aldol, and
imine. (Table 3).
In summary, we have reported the synthesis of several aryl car-
bamic acid 2-trimethylsilylethyl esters from aryl bromides and aryl
chlorides using Teoc-NH2. The Teoc group can be cleaved selec-
tively without affecting other functional groups and establishes
Teoc-NH2 as a useful ammonia surrogate for aryl amination reac-
tions. Further studies on N-substituted Teoc-NH2 are in progress.
Teoc-NH2 as an ammonia surrogate in the palladium-catalyzed coupling of aryl
bromides containing sensitive functional groups and selective Teoc group cleavagea
Entry Substrate
Product
Yieldb (%)
96 (98)
ButO2C
Br
Br
ButO2C
NHTeoc
NHTeoc
1
2
96 (94)
80 (93)
ButO2C
ButO2C
BocHN
BocHN
Br
NHTeoc
NHTeoc
Acknowledgments
3
O
O
O
The authors, P. Anjappa, D. Mullick, and K. Selvakumar thank
Goutam Das, COO, Syngene international Ltd for granting permis-
sion to carry out this work at Syngene. M. Sivakumar and K. Ruck-
mani thank Bharathidasan and Anna Universities for support.
Br
4
5
92 (90)
88 (95)
O
O
Br
O
NHTeoc
NHTeoc
NHTeoc
Supplementary data
Ph
N
Br
Ph
N
6
7
79 (96)
80 (96)
Ph
Ph
Supplementary data (experimental and analytical data for new
compounds) associated with this article can be found, in the online
Br
BocHN
Br
BocHN
TeocHN
CO2But
NHBoc
CO2But
8
(52)c
References and notes
NHBoc
1. Palladium-catalyzed aryl amination: (a) Hartwig, J. F. Handb. Organopalladium
Chem. Org. Syn. 2002, 1, 1051; (b) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem.
2002, 219, 131; (c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046; (d) Ali, M.
H.; Buchwald, S. L. J. Org. Chem. 2001, 66, 2560; (e) Kuwano, R.; Utsunomiya,
M.; Hartwig, J. F. J. Org. Chem. 2002, 67, 6479; (f) Stambuli, J. P.; Kuwano, R.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2002, 41, 4746; (g) Kataoka, N.; Shelby, Q.;
Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553; (h) Viciu, M. S.;
Germaneau, R. F.; Navarro-Fernandez, O.; Stevens, E. D.; Nolan, S. P.
Organometallics 2002, 21, 5470; (i) Stauffer, S. R.; Hartwig, J. F. J. Am. Chem.
Soc. 2003, 125, 6977; (j) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org.
Chem. 2003, 68, 2861; (k) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars,
A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653; (l) Strieter, E. R.;
Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 13978; (m) Viciu,
M. S.; Kelly, R. A., III; Stevens, E. D.; Naud, F.; Studer, M.; Nolan, S. P. Org. Lett.
2003, 5, 1479; (n) Urgaonkar, S.; Xu, J.-H.; Verkade, J. G. J. Org. Chem. 2003, 68,
8416; (o) Rataboul, F.; Zapf, A.; Jackstell, R.; Harkal, S.; Riermeier, T.; Monsees,
A.; Dingerdissen, U.; Beller, M. Chem. Eur. J. 2004, 10, 2983; (p) Urgaonkar, S.;
Verkade, J. G. J. Org. Chem. 2004, 69, 9135; (q) Charles, M. D.; Schultz, P.;
Buchwald, S. L. Org. Lett. 2005, 7, 3965; (r) Xie, X.; Zhang, T. Y.; Zhang, Z. J. Org.
Chem. 2006, 71, 6522; (s) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott,
N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101; (t) Klingensmith, L. M.;
Strieter, E. R.; Barder, T. E.; Buchwald, S. L. Organometallics 2006, 25, 82; (u)
Shekhar, S.; Ryberg, P.; Hartwig, J. F.; Mathew, J. S.; Blackmond, D. G.; Strieter,
E. R.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 3584; (v) Li, J. J.; Wang, Z.;
Mitchell, L. H. J. Org. Chem. 2007, 72, 3606; (w) Kienle, M.; Dubbaka, S. R.; Brade,
K.; Knochel, P. Eur. J. Org. Chem. 2007, 4166; (x) Surry, D. S.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2008, 47, 6338; (y) Ogata, T.; Hartwig, J. F. J. Am. Chem.
Soc. 2008, 130, 13848; (z) Shen, Q.; Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc.
2008, 130, 6586; (aa) So, C. M.; Zhou, Z.; Lau, C. P.; Kwong, F. Y. Angew. Chem.,
Int. Ed. 2008, 47, 6402; (ab) Lipshutz, B. H.; Chung, D. W.; Richa, B. Adv. Synth.
Catal. 2009, 351, 1717; (ac) Lundgren, R. J.; Sappong, K. A.; Stradiotto, M. Chem.
Eur. J. 2010, 16, 1983.
2. Nickel-catalyzed aryl amination: (a) Desmarets, C.; Schneider, R.; Fort, Y. J. Org.
Chem. 2002, 67, 3029; (b) Omar-Amrani, R.; Thomas, A.; Brenner, E.; Schneider,
R.; Fort, Y. Org. Lett. 2003, 5, 2311; (c) Chen, C.; Yang, L.-M. Org. Lett. 2005, 7,
2209; (d) Kelly, R. A., III; Scott, N. M.; Dıez-Gonzalez, S.; Stevens, E. D.; Nolan, S.
P. Organometallics 2005, 24, 3442; (e) Chen, C.; Yang, L.-M. J. Org. Chem. 2007,
72, 6324; (f) Gao, C.-Y.; Yang, L.-M. J. Org. Chem. 2008, 73, 1624; (g) Shimasaki,
T.; Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2010, 49, 2929.
3. Copper-catalyzed aryl amination: (a) Antilla, J. C.; Buchwald, S. L. Org. Lett.
2001, 3, 2077; (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793; (c) Okano,
K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 4987; (d) Lu, Z.; Twieg, R. J.;
Huang, S. D. Tetrahedron Lett. 2003, 44, 6289; (e) Antilla, J. C.; Baskin, J. M.;
Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578; (f) Ran, C.; Dai, Q.;
Harvey, R. G. J. Org. Chem. 2005, 70, 3724; (g) Hu, T.; Li, C. Org. Lett. 2005, 7,
2035; (h) Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2005, 70, 8107; (i)
Moriwaki, K.; Satoh, K.; Takada, M.; Ishino, Y.; Ohno, T. Tetrahedron Lett. 2005,
46, 7559; (j) Lu, Z.; Twieg, R. J. Tetrahedron 2005, 61, 903; (k) Jerphagnon, T.;
van Klink, G. P. M.; de Vries, J. G.; van Koten, G. Org. Lett. 2005, 7, 5241; (l)
Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127,
4120; (m) Zhang, Z.; Mao, J.; Zhu, D.; Wu, F.; Chen, H.; Wan, B. Tetrahedron
2006, 62, 4435; (n) Wolf, C.; Liu, S.; Mei, X.; August, A. T.; Casimir, M. D. J. Org.
Chem. 2006, 71, 3270; (o) Barros, O. S. R.; Nogueira, C. W.; Stangherlin, E. C.;
a
Reaction conditions: aryl bromide (1 mmol), Teoc-NH2 (1.2 mmol), Pd(OAc)2
(0.03 mmol), Xantphos (0.06 mmol), Cs2CO3 (2.0 mmol) 1,4-dioxane (7 ml), Schlenk
tube, 100 °C, 15 h.
b
Isolated yield of coupled product. Yield of free amine after Teoc deprotection is
given in the brackets.
c
Incomplete reaction; the Teoc group of the crude product was cleaved and the
product was isolated as the free amine.
Pd(OAc)2 or Pd2(dba)3 with rac-BINAP in toluene or 1,4-dioxane as
solvent. The maximum yield obtained using this system was only
60%.
Although the yield was moderate, the product formation from
Teoc-NH2 was convincing and thus we screened different catalysts.
Changing the ligand from BINAP to Xantphos resulted in an in-
crease in the yield. Also, by changing the solvent, base, and reaction
temperature, we were able to obtain a 97% isolated yield of product
from methyl 4-bromobenzoate using
a Pd(OAc)2–Xantphos–
Cs2CO3 catalyst system in 1,4-dioxane at 100 °C for 15 h. Aryl bro-
mides with various functional groups such as cyano, ester, nitro,
aldehyde, and methoxy reacted under the above-optimized condi-
tions without undergoing any other side reactions (Table 1).17
Having been successful with aryl bromides, we next extended
this reaction to aryl chlorides. Aryl chloride bond activation is an
industrially important field of research due to the lower cost of aryl
chlorides compared to aryl bromides and aryl iodides.18 We used
the same reaction conditions for the coupling of Teoc-NH2 with
aryl chlorides, but the temperature was increased from 100 °C to
120 °C. The reaction worked well with aryl chlorides possessing
different substituents such as cyano, ester, keto, nitro, and alde-
hyde, and the yields obtained were more than 80% in most cases.
Surprisingly, this reaction only worked moderately well with aryl
chlorides with electron-donating groups (Table 2, entries 10 and
11), whereas heterocyclic aryl chlorides reacted well with Teoc-
NH2 (Table 2).
The aminated aryl trimethylsilylethyl ester products were very
stable and could be used for further transformations without
affecting the Teoc group. The Teoc group was cleaved selectively
using CsF in DMF without affecting other functional groups.19 We
have carried out Teoc deprotection with several products having
acid-sensitive groups, for example, the Teoc group was cleaved