I. Ravikumar et al. / Inorganica Chimica Acta 363 (2010) 2886–2895
2895
Table 7
obtained free of charge from The Cambridge Crystallographic Data
data associated with this article can be found, in the online version,
Hydrogen-bonding interactions between hexafluorosilicate anion and surrounding
L1H+ in complex 3.
D–HꢀꢀꢀA
d(HꢀꢀꢀA) Å
d(DꢀꢀꢀA) Å
<DHA (°)
N4–H4CꢀꢀꢀF1
1.926
2.460
2.401
2.071
1.922
2.447
2.479
2.353
2.395
2.245
2.584
2.638
1.707
2.225
2.612
2.420
2.343
2.589
2.796(4)
2.833(4)
3.226(4)
2.796(5)
2.733(5)
3.221(4)
3.389(5)
3.172(4)
3.332(4)
3.129(5)
3.325(4)
3.420(5)
2.735(4)
2.897(4)
3.520(5)
3.022(5)
3.211(4)
3.060(4)
167.1
111.4
147.8
145.4
156.9
140.6
156.4
141.8
162.2
151.2
133.2
137.8
158.0
146.1
155.6
119.8
155.1
165.6
N6–H6CꢀꢀꢀF1
References
C18–H18ꢀꢀꢀF1
N9–H9CꢀꢀꢀF2
[1] A. Bianchi, K. Bowman-James, E. García-España (Eds.), Supramolecular
Chemistry of Anions, Wiley-VCH, New York, 1997.
[2] P.D. Beer, P.A. Gale, Angew. Chem., Int. Ed. 40 (2001) 486.
[3] J.M. Llinares, D. Powell, K. Bowman-James, Coord. Chem. Rev. 240 (2003) 57.
[4] J.L. Atwood, J.W. Steed (Eds.), The Encyclopedia of Supramolecular Chemistry,
Dekker, New York, 2004.
[5] K. Bowman-James, Acc. Chem. Res. 38 (2005) 671.
[6] E. García-España, P. Díaz, J.M. Llinares, A. Bianchi, Coord. Chem. Rev. 250
(2006) 2952.
[7] K. Wichmann, B. Antonioli, T. Söhnel, M. Wenzel, K. Gloe, K. Gloe, J.R. Price, L.F.
Lindoy, A.J. Blake, A. Schröder, Coord. Chem. Rev. 250 (2006) 2987.
[8] B.L. Schottel, H.T. Chifotides, K.R. Dunbar, Chem. Soc. Rev. 37 (2008) 68.
[9] A. Bianchi, K. Bowman-James, E. García-España (Eds.), Supramolecular
Chemistry of Anions, Wiley-VCH, New York, 1997.
[10] S.S. Zhu, H. Staats, K. Brandhorst, J. Grunenberg, F. Gruppi, E. Dalcanale, A.
Lützen, K. Rissanen, C.A. Schalley, Angew. Chem., Int. Ed. 47 (2008) 788.
[11] M. Albrecht, C. Wessel, M. de Groot, K. Rissanen, A. Lüchow, J. Am. Chem. Soc.
130 (2008) 4600.
N11–H11CꢀꢀꢀF2
C41–H41ꢀꢀꢀF2
C19–H19AꢀꢀꢀF3
C29–H29BꢀꢀꢀF3
C37–H37AꢀꢀꢀF3
C28–H28BꢀꢀꢀF4
C37–H37AꢀꢀꢀF4
C37–H37BꢀꢀꢀF4
O19–H19CꢀꢀꢀF4
N6–H6CꢀꢀꢀF5
C46–H46AꢀꢀꢀF5
C47–H47BꢀꢀꢀF5
C41–H41ꢀꢀꢀF6
O19–H19CꢀꢀꢀF6
observed in cases of any oxyanions. Among three receptors ortho
isomer, L2 shows exclusive binding toward only fluoride in the ha-
lide series. Though L1 shows binding toward fluoride as well as
chloride but it acts as a fluoride selective receptor as evident from
binding constant data. On the other hand L3 does not show selec-
tivity among fluoride and chloride in solution-state study. Solu-
tion-state binding of halides in the above cases indicate the
participation of amide –NH and aryl-CH protons in anion binding
process. The solid-state structural study of para-isomer, L1 shows
that two of the three amide functional groups present in the ligand
are in strong intramolecular hydrogen-bonding interactions which
create a C3v symmetric cleft which could be suitable for encapsula-
tion of anionic guest. On the other hand ortho-isomer, L2 has two
different conformations in an asymmetric unit where each of the
unit is involved one intramolecular hydrogen-bonding interactions
between two amide groups. This receptor does not possess sym-
metric cleft could be due to the bulky nitro substitution at the
ortho position. Structural studies of the anion binding with the pro-
tonated triamide receptor (HL1)+ shows that not one of the guests
is encapsulated inside the tren arm irrespective of size, shape, and
charge of the anions. However, detailed structural investigation
clearly demonstrates that the self-alignment, preorganization,
and orientation of the multiple ligand moieties, depending upon
the dimensionality of the incoming anionic guest, play a crucial
role in making various molecular interactions in the binding of
the anion outside the tripodal cavity. In all the complexes of
(HL1)+, (1–3), amide N–H and aryl C–Hꢀꢀꢀanion hydrogen bonds
form mostly by the meta hydrogen with respect to the –NO2 group
and in some cases with the para hydrogen.
[12] Y. Li, A.H. Flood, Angew. Chem., Int. Ed. 47 (2008) 2649.
[13] R.J. Götz, A. Robertazzi, I. Mutikainen, U. Turpeinen, P. Gamez, J. Reedijk, Chem.
Commun. (2008) 3384.
[14] C. Caltagirone, P.A. Gale, J.R. Hiscock, S.J. Brooks, M.B. Hursthouse, M.E. Light,
Chem. Commun. (2008) 3007.
[15] R.B. Bedford, M. Betham, C.P. Butts, S.J. Coles, M.B. Hursthouse, P.N. Scully,
J.H.R. Tucker, J. Wilkie, Y. Willener, Chem. Commun. (2008) 2429.
[16] D.R. Turner, M.J. Paterson, J.W. Steed, Chem. Commun. (2008) 1395.
[17] K.-Y. Ng, V. Felix, S.M. Santos, N.H. Rees, P.D. Beer, Chem. Commun. (2008)
1281.
[18] C. Caltagirone, G.W. Bates, P.A. Gale, M.E. Light, Chem. Commun. (2008) 61.
[19] C. Schmuck, V. Bickert, J. Org. Chem. 72 (2007) 6832.
[20] O.B. Berryman, A.C. Sather, B.P. Hay, J.S. Meisner, D.W. Johnson, J. Am. Chem.
Soc. 130 (2008) 10895.
[21] S. Valiyaveettil, J.F.J. Engbersen, W. Verboom, D.N. Reinhoudt, Angew. Chem.,
Int. Ed. Engl. 32 (1993) 900.
[22] P.D. Beer, Z. Chen, A.J. Goulden, A. Graydon, S.E. Stokes, T. Wear, J. Chem. Soc.
Chem. Commun. (1993) 1834.
[23] P.D. Beer, P.K. Hopkins, J.D. McKinney, Chem. Commun. (1999) 1253.
[24] C. Raposo, M. Almaraz, M. Martín, V. Weinrich, Ma.L. Mussóns, V. Alcázar, Ma.C.
Caballero, J.R. Morán, Chem. Lett. (1995) 759.
[25] A. Danby, L. Seib, K. Bowman-James, N.W. Alcock, Chem. Commun. (2000) 973.
[26] C. Bazzicalupi, A. Bencini, E. Berni, A. Bianchi, S. Ciattini, C. Giorgi, S. Maoggi, P.
Paoletti, B. Valtancoli, J. Org. Chem. 67 (2002) 9107.
[27] K. Kavallieratos, A. Danby, G.J. Van Berkel, M.A. Kelly, R.A. Sachleben, B.A.
Moyer, K. Bowman-James, Anal. Chem. 72 (2000) 5258.
[28] P.S. Lakshminarayanan, E. Suresh, P. Ghosh, Inorg. Chem. 45 (2006) 4372.
[29] R. Custelcean, B.A. Moyer, B.P. Hay, Chem. Commun. (2005) 5971.
[30] D.A. Jose, D.K. Kumar, B. Ganguly, A. Das, Inorg. Chem. 46 (2007) 5817.
[31] R. Custelcean, P. Remy, P.V. Bonnesen, De-en. Jiang, B.A. Moyer, Angew. Chem.,
Int. Ed. 47 (2008) 1866.
[32] B. Wu, J. Liang, J. Yang, C. Jia, X.-J. Yang, H. Zhang, N. Tang, C. Janiak, Chem.
Commun. (2008) 1762.
[33] V.S. Bryantsev, B.P. Hay, Org. Lett. 7 (2005) 5031.
[34] M.A. Hossain, J.A. Liljegren, D. Powell, K. Bowman-James, Inorg. Chem. 43
(2004) 3751.
[35] P.S. Lakshminarayanan, I. Ravikumar, E. Suresh, P. Ghosh, Inorg. Chem. 46
(2007) 4769.
[36] P.S. Lakshminarayanan, I. Ravikumar, E. Suresh, P. Ghosh, Chem. Commun.
(2007) 5214.
[37] I. Ravikumar, P.S. Lakshminarayanan, M. Arunachalam, E. Suresh, P. Ghosh,
Dalton Trans. (2009) 4160.
Acknowledgements
P.G. Gratefully acknowledges the Council for Scientific and
Industrial Research (CSIR), New Delhi, India (Grant No. 01(2225)/
08/EMR-II) for financial support. X-ray Crystallography study is
performed at the DST-funded National Single Crystal X-ray Diffrac-
tion Facility at the Department of Inorganic Chemistry, IACS.
[38] M.J. Hynes, J. Chem. Soc., Dalton Trans. (1993) 311.
[39] G.M. Sheldrick, SAINT and XPREP, Version 5.1, Siemens Industrial Automation Inc.,
Madison, WI, 1995.
[40] SADABS, Empirical Absorption Correction Program, University of Göttingen:
Göttingen, Germany, 1997.
[41] G.M. Sheldrick, SHELXTL Reference Manual, Version 5.1, Bruker AXS, Madison,
WI, 1997.
[42] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University
of Göttingen, Göttingen, Germany, 1997.
[43] A.L. Spek, PLATON-97, University of Utrecht, Utrecht, The Netherlands, 1997.
[44] MERCURY 2.3 Supplied with Cambridge Structural Database, CCDC, Cambridge,
UK, 2010.
[45] C.A. Ilioudis, D.A. Tocher, J.W. Steed, J. Am. Chem. Soc. 126 (2004) 12395.
[46] S.O. Kang, J.M. Llinares, D. Powell, D. VanderVelde, K. Bowman-James, J. Am.
Chem. Soc. 125 (2003) 10152.
Appendix A. Supplementary material
1H NMR, and HRMS of L1 and L2. ORTEP diagrams of L1, L2 and
complexes 1–3; packing diagrams of complexes 1 and 2. CCDC
760005, 760006, 760007, 760008 and 760009 contain the supple-
mentary crystallographic data for this paper. These data can be