C. Zanato, L. Pignataro, A. Ambrosi, Z. Hao, C. Gennari
SHORT COMMUNICATION
(1a).[5c,5i] The new synthetic route is flexible enough to al-
low (i) inversion at C9 by oxidation–reduction[4a,4e] and
(ii) the preparation of other non-natural analogs of dictyos-
tatin [e.g., 12,13-bis-epi-dictyostatin by using the mesylate
of (S)-3-butyn-2-ol in the Marshall–Tamaru palladium-cat-
alyzed allenylzinc addition]. Future work will be focused on
the synthesis of such analogs, which can be insightful for
better understanding the structure–activity relationships of
this class of antitumor agents.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and characterization data for new
compounds along with copies of the NMR spectra (1H, 13C).
Acknowledgments
We thank the Ministero dellЈUniversità e della Ricerca for financial
support (PRIN prot. 2008J4YNJY) and for a PhD fellowship
(Borsa di dottorato ‘Progetto giovani’ to C.Z.). L.P. thanks Milan
University for a postdoctoral fellowship (“Assegno di ricerca”).
Z.H. (Lanzhou University, PRC) thanks the China Scholarship
Council for a PhD mobility grant.
[1] a) R. A. Isbrucker, J. Cummins, S. A. Pomponi, R. E. Longley,
A. E. Wright, Biochem. Pharmacol. 2003, 66, 75–82; b) C. Ma-
diraju, M. C. Edler, E. Hamel, B. S. Raccor, R. Balachandran,
G. Zhu, K. A. Giuliano, A. Vogt, Y. Shin, J.-H. Fournier, Y.
Fukui, A. M. Brückner, D. P. Curran, B. W. Day, Biochemistry
2005, 44, 15053–15063; c) A. Canales, R. Matesanz, N. M.
Gardner, J. M. Andreu, I. Paterson, J. F. Diaz, J. Jiménez-Bar-
bero, Chem. Eur. J. 2008, 14, 7557–7569.
[2] A. G. Novartis, Annual Report Pursuant to Section 13 or 15d
of the Securities Exchange Act of 1934 for the fiscal year ended
December 31, 2004, Securities Exchange Commission file
number 1–15024, Form 20-F, filed Jan 28, 2005, p 42.
Scheme 5. 1,3-Asymmetric induction models.
The secondary alcohol of compound 18 was sub-
sequently silylated with TBSOTf to give the fully protected
intermediate 19 (100%). Selective PMB removal with DDQ
provided compound 20 (90%), which was then saponified
under basic conditions (KOH) to provide seco-acid 21
(100%). Yamaguchi macrolactonization[22] of seco-acid 21
gave macrolide 22 in good yield (80%), together with a
[3] I. Paterson, R. Britton, O. Delgado, A. E. Wright, Chem. Com-
mun. 2004, 632–633.
small amount (5–10%) of the (2E,4E)-dienoate (JH2,H3
=
[4] a) I. Paterson, R. Britton, O. Delgado, A. Meyer, K. G. Poul-
lennec, Angew. Chem. Int. Ed. 2004, 43, 4629–4633; b) Y. Shin,
J.-H. Fournier, Y. Fukui, A. M. Brückner, D. P. Curran, Angew.
Chem. Int. Ed. 2004, 43, 4634–4637; c) G. W. O’Neil, A. J. Phil-
lips, J. Am. Chem. Soc. 2006, 128, 5340–5341; d) P. V. Ramach-
andran, A. Srivastava, D. Hazra, Org. Lett. 2007, 9, 157–160;
e) for an improved version of the total synthesis described in
ref.[4a] see: I. Paterson, R. Britton, O. Delgado, N. M. Gardner,
A. Meyer, G. J. Naylor, K. G. Poullennec, Tetrahedron 2010,
66, 6534–6545.
[5] a) Y. Shin, J.-H. Fournier, R. Balachandran, C. Madiraju, B. S.
Raccor, G. Zhu, M. C. Edler, E. Hamel, B. W. Day, D. P. Cur-
ran, Org. Lett. 2005, 7, 2873–2876; b) Y. Fukui, A. M.
Brückner, Y. Shin, R. Balachandran, B. W. Day, D. P. Curran,
Org. Lett. 2006, 8, 301–304; c) I. Paterson, N. M. Gardner,
K. G. Poullennec, A. E. Wright, Bioorg. Med. Chem. Lett.
2007, 17, 2443–2447; d) W.-H. Jung, C. Harrison, Y. Shin, J.-
H. Fournier, R. Balachandran, B. S. Raccor, R. P. Sikorski, A.
Vogt, D. P. Curran, B. W. Day, J. Med. Chem. 2007, 50, 2951–
2966; e) Y. Shin, J.-H. Fournier, A. Brückner, C. Madiraju, R.
Balachandran, B. S. Raccor, M. C. Edler, E. Hamel, R. P. Si-
korski, A. Vogt, B. W. Day, D. P. Curran, Tetrahedron 2007, 63,
8537–8562; f) I. Paterson, N. M. Gardner, E. Guzmán, A. E.
Wright, Bioorg. Med. Chem. Lett. 2008, 18, 6268–6272; g) J. L.
Eiseman, L. Bai, W.-H. Jung, G. M-Letts, B. W. Day, D. P. Cur-
ran, J. Med. Chem. 2008, 51, 6650–6653; h) I. Paterson, N. M.
Gardner, E. Guzmán, A. E. Wright, Bioorg. Med. Chem. 2009,
17, 2282–2289; i) W. Zhu, M. Jiménez, W.-H. Jung, D. P. Cam-
arco, R. Balachandran, A. Vogt, B. W. Day, D. P. Curran, J.
Am. Chem. Soc. 2010, 132, 9175–9187.
15.2 Hz), probably formed through a reversible Michael ad-
dition of DMAP to the (2Z,4E)-dienoate,[4e] and which
could be separated by flash chromatography. Global depro-
tection of the TBS groups with 3 HCl/MeOH in THF
(2.2:1 volume ratio)[4d] caused an extensive degradation of
the product, whereas the use of HF·Py in THF[4c,4e] con-
verted 22 cleanly into (+)-9-epi-dictyostatin (1b) in 70%
yield. Our synthetic compound 1b produced analytical data
(1H NMR in CD3OD, [α]D) in disagreement with those re-
corded from an authentic sample of (–)-dictyostatin (1a)
kindly provided by Prof. Ian Paterson (University of Cam-
bridge, UK). Our synthetic compound 1b was identical (1H
NMR and 13C NMR in [D6]benzene, [α]D, HRMS, IR, Rf)
to those described by Paterson[5c] and Curran[5i] for (+)-
9-epi-dictyostatin (see the Supporting Information for full
analytical details).
Conclusions
A highly stereoselective synthesis of (+)-9-epi-dictyosta-
tin (1b) has been carried out in 1.53% overall yield over 29
steps (longest linear sequence from the Roche ester). Unfor-
tunately, unnatural configuration at C9 is known to cause
a substantial drop in cytotoxicity relative to dictyostatin
5770
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 5767–5771