C O M M U N I C A T I O N S
Furukawa, N.; Seki, Y. Chem. Lett. 2000, 750–751. (f) Tobisu, M.; Ano,
Y.; Chatani, N. Chem.sAsian J. 2008, 3, 1585–1591.
(5) Tsukada, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 5022–5023.
(6) (a) Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534–7435.
For an extension of this approach to the silylation of indoles, see: (b)
Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2010,
132, 4068–4069.
(7) For recent examples of hydroxyl-directed C-H bond activation, see: (a)
Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
12203–12205. (b) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J.
Org. Lett. 2010, 12, 3856–3859. (c) Lu, Y.; Wang, D.-H.; Engle, K. M.;
Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916–5921.
results illustrate the potential of the hydroxyl-directed ortho-
silylation to build molecular complexity.
Although the mechanistic details of the present silylation have
yet to be elucidated, some insight into the C-H bond activation
step may be gained from the regioselectivity observed for the
silylation of 4-chlorobenzophenone, which produced a mixture of
constitutional isomers 13a and 13b in a 71:29 ratio (eq 3). Although
the regioselectivity is only modest, the slight preference for
silylation of the more electron-deficient C-H bond is consistent
with C-H bond cleavage proceeding by an oxidative addition
mechanism, rather than an electrophilic metalation pathway.
(8) For previous examples of structurally related benzoxasiloles, see: (a) Ando,
W.; Sekiguchi, A.; Migita, T. J. Am. Chem. Soc. 1975, 97, 7159–7160. (b)
Ando, W.; Sekiguchi, A. J. Organomet. Chem. 1977, 133, 219–230. (c)
Ando, W.; Ikeno, M.; Sekiguchi, A. J. Am. Chem. Soc. 1977, 99, 6447–
6449. (d) Kang, K. T.; Song, H. Y.; Seo, H. C. Chem. Lett. 1985, 617–
620. (e) Farnham, W. B.; Dixon, D. A.; Middleton, W. J.; Calabrese, J. C.;
Harlow, R. L.; Whitney, J. F.; Jones, G. A.; Guggenberger, L. J. J. Am.
Chem. Soc. 1987, 109, 476–483. (f) Yamamoto, Y.; Takeda, Y.; Akiba, K.
Tetrahedron Lett. 1989, 30, 725–728. (g) Sieburth, S. M.; Fensterbank, L.
J. Org. Chem. 1992, 57, 5279–5281. (h) Belzner, J.; Ihmels, H.; Pauletto,
L.; Noltemeyer, M. J. Org. Chem. 1996, 61, 3315–3319. (i) Fitch, J. W.;
Cassidy, P. E.; Ahmed, M. J. J. Organomet. Chem. 1996, 522, 55–57. (j)
Hijji, Y. M.; Hudrlik, P. F.; Hudrlik, A. M. Chem. Commun. 1998, 1213–
1214. (k) Studer, A.; Steen, H. Chem.sEur. J. 1999, 5, 759–773. (l) Hudrlik,
P. F.; Arango, J. O.; Hijji, Y. M.; Okoro, C. O.; Hudrlik, A. M. Can.
J. Chem. 2000, 78, 1421–1427. (m) Bashiardes, G.; Chaussebourg, V.;
Laverdan, G.; Pornet, J. Chem. Commun. 2004, 122–123. (n) Chouraqui,
G. l.; Petit, M.; Aubert, C.; Malacria, M. Org. Lett. 2004, 6, 1519–1521.
(o) Levin, S.; Nani, R. R.; Reisman, S. E. Org. Lett. 2010, 12, 780–783.
(9) For the use of benzoxasiloles as reusable aryl and alkenyl transfer agents,
see: (a) Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.; Hiyama, T. J. Am.
Chem. Soc. 2005, 127, 6952–6953. (b) Nakao, Y.; Sahoo, A. K.; Yada,
A.; Chen, J. S.; Hiyama, T. Sci. Technol. AdV. Mater. 2006, 7, 536–543.
(c) Nakao, Y.; Imanaka, H.; Chen, J. S.; Yada, A.; Hiyama, T. J.
Organomet. Chem. 2007, 692, 585–603. (d) Nakao, Y.; Ebata, S.; Chen,
J. S.; Imanaka, H.; Hiyama, T. Chem. Lett. 2007, 36, 606–607. (e) Nakao,
Y.; Chen, J.; Imanaka, H.; Hiyama, T.; Ichikawa, Y.; Duan, W.-L.; Shintani,
R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 9137–9143. (f) Nakao, Y.;
Chen, J.; Tanaka, M.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 11694–
11695. (g) Shintani, R.; Ichikawa, Y.; Hayashi, T.; Chen, J.; Nakao, Y.;
Hiyama, T. Org. Lett. 2007, 9, 4643–4645. (h) Nakao, Y.; Takeda, M.;
Chen, J. S.; Hiyama, T.; Ichikawa, Y.; Shintani, R.; Hayashi, T. Chem.
Lett. 2008, 37, 290–291. (i) Nakao, Y.; Takeda, M.; Chen, J.; Hiyama, T.
Synlett 2008, 774–776.
In summary, we report a new strategy for arene ortho-silylation
in which a hydroxyl group serves as the directing element for Ir-
catalyzed C-H bond activation via dehydrogenative cyclization of
in situ generated diethyl(hydrido)silyl ethers. This transformation
proceeds under relatively mild conditions (80-100 °C) with low
catalyst loadings (1 mol %), and a range of functional groups were
found to be compatible with the reaction conditions. The ability to
conduct C-H bond functionalization with a substrate containing a
Si-O bond is unusual and makes possible the synthetically useful
conversions of the benzoxasilole products to phenol and biaryl
derivatives by Tamao-Fleming oxidation and Hiyama cross-
coupling. Both of these transformations of the silylated products
can be conducted as a part of a one-pot ortho-silylation/function-
alization procedure, without the need for isolation of the intermedi-
ate benzoxasilole. Further studies to expand the substrate scope
and to gain insight into the C-H activation and C-Si bond-forming
steps of this transformation are currently in progress.
(10) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599–7662.
(11) (a) Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486–1499.
(b) Denmark, S. E.; Sweis, R. F. In Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; De Meijere, A., Diederich, F., Eds.; Wiley-VCH: New
York, 2004; pp 163-216. (c) Hiyama, T.; Shirakawa, E. In Cross-Coupling
Reactions; Miyaura, N., Ed.; Springer: Berlin/Heidelberg, 2002; Vol. 219,
pp 61-85.
Acknowledgment. We thank the NSF (CHE-0910641) to J.F.H.
and NIH (GM087901) to E.M.S. for funding of this work and
Johnson Matthey for a gift of [Ir(cod)OMe]2 and Pd(OAc)2. E.M.S.
thanks Dan Robbins and Carl Liskey for insightful discussions.
(12) Field, L. D.; Messerle, B. A.; Rehr, M.; Soler, L. P.; Hambley, T. W.
Organometallics 2003, 22, 2387–2395.
(13) For examples of Rh-catalyzed ketone hydrosilylation with Et2SiH2, see:
(a) Reyes, C.; Prock, A.; Giering, W. P. J. Organomet. Chem. 2003, 671,
13–26. (b) Ojima, I.; Kogure, T.; Kumagai, M.; Horiuchi, S.; Sato, T. J.
Organomet. Chem. 1976, 122, 83–97.
(14) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig,
J. F. Chem. ReV. 2010, 110, 890–931.
Supporting Information Available: Complete experimental details
and characterization of new products. This material is available free of
(15) The accelerating effect of norbornene on Ir-catalyzed C-H activation has
been observed previously; see: (a) Lu, B.; Falck, J. R. Angew. Chem., Int.
Ed. 2008, 47, 7508–7510. (b) Lu, B.; Falck, J. R. J. Org. Chem. 2010, 75,
1701–1705.
(16) Although purification of the diethyl(hydrido)silyl ethers was found to be
unnecessary, removal of the volatiles (by placing the reaction mixture under
vacuum) was necessary to prevent poisoning of the second charge of
[Ir(cod)OMe]2 by residual Et2SiH2, in line with previous observations (see
ref 6a).
(17) The benzoxasilole products derived from primary silyl ethers proved
sensitive to silica gel chromatography but were readily purified by bulb-
to-bulb distillation of the concentrated reaction mixture.
References
(1) For general C-H activation reviews, see: (a) Dick, A. R.; Sanford, M. S.
Tetrahedron 2006, 62, 2439–2463. (b) ActiVation and Functionalization
of C-H Bonds; Goldberg, K. I., Goldman, A. S., Eds.; American Chemical
Society: Washington, DC, 2004; Vol. 885. (c) Kakiuchi, F.; Chatani, N.
AdV. Synth. Catal. 2003, 345, 1077–1101. (d) Shilov, A. E.; Shul’pin, G. B.
Chem. ReV. 1997, 97, 2879–2932.
(2) For recent applications of C-H activation with main group reagents to
complex molecule synthesis, see: (a) Fischer, D. F.; Sarpong, R. J. Am.
Chem. Soc. 2010, 132, 5926–5927. (b) Tomita, D.; Yamatsugu, K.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946–6948. (c) Beck,
E. M.; Hatley, R.; Gaunt, M. J. Angew. Chem., Int. Ed. 2008, 47, 3004–
3007. For general reviews of strategic use of C-H activation in synthesis,
see: (d) Ishihara, Y.; Baran, P. S. Synlett 2010, 1733–1745. (e) Godula,
K.; Sames, D. Science 2006, 312, 67–72.
(18) For recent examples of arene ortho-oxygenation by directed C-H activation,
see: (a) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654–
14655. (b) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8,
1141–1144. (c) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.
2004, 126, 2300–2301.
(19) For arene ortho-oxygenation by a directed ortho-lithiation/silylation/
oxidation sequence, see: Bracegirdle, S.; Anderson, E. A. Chem. Commun.
2010, 46, 3454–3456.
(3) (a) Gustavson, W. A.; Epstein, P. S.; Curtis, M. D. Organometallics 1982,
1, 884–885. (b) Sakakura, T.; Tokunaga, Y.; Sodeyama, T.; Tanaka, M.
Chem. Lett. 1987, 2375–2378.
(20) For previous examples of fluoride-free Tamao-Fleming oxidation, see: (a)
Reference 19. (b) Tamao, K.; Ishida, N. J. Organomet. Chem. 1984, 269,
c37–c39.
(4) For examples using hydrosilanes, see: (a) Kakiuchi, F.; Igi, K.; Matsumoto,
M.; Chatani, N.; Murai, S. Chem. Lett. 2001, 422–423. (b) Kakiuchi, F.;
Igi, K.; Matsumoto, M.; Hayamizu, T.; Chatani, N.; Murai, S. Chem.
Lett. 2002, 396–397. (c) Kakiuchi, F.; Matsumoto, M.; Tsuchiya, K.;
Igi, K.; Hayamizu, T.; Chatani, N.; Murai, S. J. Organomet. Chem. 2003,
686, 134–144. (d) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131,
7502–7503. For examples using other silane species, see: (e) Kakiuchi,
F.; Matsumoto, M.; Sonoda, M.; Fukuyama, T.; Chatani, N.; Murai, S.;
(21) Snieckus, V. Chem. ReV. 1990, 90, 879–933.
(22) See the Supporting Information for details.
(23) For the NaOH-promoted cross-coupling of aryl- and alkenyl(dichloro)si-
lanes, in which in situ generated organosilanolates are likely intermediates,
see: Hagiwara, E.; Gouda, K.-i.; Hatanaka, Y.; Hiyama, T. Tetrahedron
Lett. 1997, 38, 439–442.
JA1086547
9
J. AM. CHEM. SOC. VOL. 132, NO. 48, 2010 17095