Phthalocyanine-Pyrene Conjugates
A R T I C L E S
Scheme 1. Synthesis of H2Pc-Py and ZnPc-Py
derivatives. Starting from the metal-free, unsymmetrically substi-
tuted Pc bearing a hydroxymethyl moiety (i.e., H2Pc-OH),22 an
esterification reaction was carried out with 1-pyrenebutyric acid in
the presence of dicyclohexylcarbodiimide (DCC) and N,N-dim-
ethylaminopyridine (DMAP) as condensation agents. The resulting
H2Pc-Py is also the precursor of the metalated ZnPc-Py derivative,
which was prepared by treatment of the metal-free conjugate with
donors requires electronic communication between the different
constituents via functionalization. The functionalization of
SWNTs is achieved by either covalent or non-covalent chem-
istry. Covalent functionalization generally includes the oxidation
of SWNTs to remove their caps and to create defect sites (i.e.,
COOH groups) at their ends as well as sidewalls. Defect sites
are useful to add functional entities in subsequent steps via the
formation of covalent bonds with electron donors.9 Ultrasonic
treatment can likewise induce SWNT oxidation.10 All of these
processes have in common that the rather harsh conditions cause
defects on the carbon backbone of SWNTs.11 Undeniably, such
treatments influence the electronic properties of SWNTs due
to partial saturation/destruction of the extended π-system. In
the context of non-covalent functionalization, interactions
between aromatic groups and sidewalls of SWNT are promoted
by means of hydrophobic, π-stacking, or even van der Waals
interactions.8b,12 The major advantage of the non-covalent
functionalization is the fact that the carbon backbone is not
damaged and the properties of SWNTs are largely preserved.
Leading examples include the immobilization of pyrene,13
anthracene,14 and porphyrins.15
In this study, we pursue the non-covalent immobilization of
phthalocyanines as excited electron donors onto SWNTs.
Phthalocyanines show excellent light-harvesting properties in
the visible and NIR region of the solar spectrum as well as high
photostability and unique physical properties.16 Electron
donor-acceptor interactions with phthalocyanines have been
studied in many forms: phthalocyanine/porphyrin conjugates,17
phthalocyanine/fullerene conjugates and hybrids,4,18 as well as
phthalocyanine oligomers.19 Covalently linked Pc-SWNT en-
sembles have also been described.20 The general concept of non-
covalent functionalization was recently extended to probe the
interactions between phthalocyanine-based poly(phenylene vi-
nylene) oligomers and SWNTs.21 In stark contrast to any of
the aforementioned examples, we took advantage of the well-
known features of pyrene and pyrene derivatives to adhere to
SWNTs13 and used them as anchor groups to immobilize metal-
free (H2Pc) as well as zinc phthalocyanines (ZnPc) onto the
surface of SWNTs. The resulting electron donor-acceptor
hybrids form stable suspensions in organic solvents that render
them particularly useful for the production of prototype solar
cells containing SWNT buckypapersa matrix film of individual
and thin bundles of SWNTs.20f
(8) (a) Dyke, C. A.; Tour, J. M. J. Phys. Chem. A 2004, 51, 11151. (b)
Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. ReV. 2006,
106, 1105.
(9) (a) Hwang, K. C. J. Chem. Soc., Chem. Commun. 1995, 2, 173. (b)
Mawhinney, D. B.; Naumenko, V.; Kuznetzova, A.; Yates, Y. T., Jr.
J. Am. Chem. Soc. 2000, 122, 2383. (c) Banerjee, S.; Hemraj-Benny,
T.; Wong, S. S. AdV. Mater. 2005, 17, 17.
(10) Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.;
Smalley, R. E. Chem. Phys. Lett. 1998, 282, 429.
(11) Zhang, Y.; Shi, Z.; Gu, Z.; Iijima, S. Carbon 2000, 38, 2055.
(12) (a) Murakami, H.; Nakashima, N. J. Nanosci. Nanotechnol. 2006, 6,
16. (b) Star, A.; Liu, Y.; Grant, K.; Ridvan, L.; Stoddart, J. F.;
Steuerman, D. W.; Diehl, M. R.; Boukai, A.; Heath, J. R. Macromol-
ecules 2003, 36, 553.
(13) (a) Nakashima, N.; Tomonari, Y.; Murakami, H. Chem. Lett. 2002,
31, 638. (b) Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Tagmatarchis,
N.; Prato, M. Angew. Chem., Int. Ed. 2004, 43, 5526. (c) Chen, R. J.;
Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838. (d)
´
Angelez-Herranz, M.; Ehli, C.; Campidelli, S.; Guttie´rez, M.; Hug,
G. L.; Ohkubo, K.; Fukuzumi, S.; Prato, M.; Mart´ın, N.; Guldi, D. M.
J. Am. Chem. Soc. 2008, 130, 66. (e) Ehli, C.; Rahman, G. M. A.;
Jux, N.; Balbinot, D.; Guldi, D. M.; Paolucci, F.; Marcaccio, M.;
Paolucci, D.; Melle-Franco, M.; Zerbetto, F.; Campidelli, S.; Prato,
M. J. Am. Chem. Soc. 2006, 128, 11222. (f) Bahun, G. J.; Wang, C.;
Adronov, A. J. Polym. Sci. A: Polym. Chem. 2006, 44, 1941. (g)
Schulz-Drost, C.; Sgobba, V.; Gerhards, C.; Leubner, S.; Calderon,
R. M. K.; Ruland, A.; Guldi, D. M. Angew. Chem., Int. Ed. 2010, 49,
6425. (h) Petrov, P.; Stassin, F.; Pagnoulle, C.; Je´roˆme, R. Chem.
Commun. 2003, 2904. (i) Georgakilas, V.; Tzitzios, V.; Gournis, D.;
Petridis, D. Chem. Mater. 2005, 17, 1613. (j) Yuan, W. Z.; Sun, J. Z.;
Dong, Y.; Ha¨ussler, M.; Yang, F.; Xu, H. P.; Qin, A.; Lam, J. W. Y.;
Zheng, Q.; Tang, B. Z. Macromolecules 2006, 39, 8011. (k) Meuer,
S.; Braun, L.; Zentel, R. Macromol. Chem. Phys. 2009, 10, 1528. (l)
Sandanayaka, A. S. D.; Chitta, R.; Subbaiyan, N. K.; D’Souza, L.;
Ito, O.; D’Souza, F. J. Phys. Chem. C 2009, 113, 13425. (m)
Maligaspe, E.; Sandanayaka, A. S. D.; Hasobe, T.; Ito, O.; D’Souza,
F. J. Am. Chem. Soc. 2010, 132, 8158.
(14) (a) Zhang, J.; Lee, J.-K.; Wu, Y.; Murray, R. W. Nano Lett. 2003, 3,
403. (b) Satishkumar, B. C.; Brown, L. O.; Gao, Y.; Wang, C.-C.;
Wang, H.-L.; Doorn, S. K. Nat. Nanotechnol. 2007, 2, 560.
(15) (a) Murakami, H.; Nomura, T.; Nakashima, N. Chem. Phys. Lett. 2003,
378, 481. (b) Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando,
K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y.-P. J. Am. Chem. Soc. 2004,
126, 1014. (c) Satake, A.; Miyajima, Y.; Kobuke, Y. Chem. Mater.
2005, 17, 716. (d) Cheng, F.; Adronov, A. Chem.sEur. J. 2006, 12,
5053. (e) Sgobba, V.; Rahman, G. M. A.; Guldi, D. M.; Jux, N.;
Campidelli, S.; Prato, M. AdV. Mater. 2006, 18, 2264.
(16) (a) de la Torre, G.; Claessens, C. G.; Torres, T. Chem. Commun. 2007,
2000. (b) Rio, Y.; Rodriguez-Morgade, M. S.; Torres, T. Org. Biomol.
Chem. 2008, 6, 1877. (c) de la Torre, G.; Bottari, G.; Hahn, U.; Torres,
T. Struct. Bonding (Berlin) 2010, 135, 1.
Synthesis
Scheme 1 summarizes the synthesis of metal-free phthalocyanine-
pyrene (H2Pc-Py) and zinc phthalocyanine-pyrene (ZnPc-Py)
9
J. AM. CHEM. SOC. VOL. 132, NO. 45, 2010 16203