R. Sultana et al. / Inorganica Chimica Acta 363 (2010) 3432–3441
3441
[13] G.L. Eichhorn, in: G.L. Eichhorn (Ed.), Inorganic Biochemistry, vol. 2, merican
Elsevier, New York, NY, 1973, p. 1210.
[14] D.L. Geffner, M. Azukizawa, J.M. Heisman, J. Clin. Invest. 55 (1975) 224.
[15] E.R.T. Tiekink, P.D. Cookson, B.M. Linahan, L.K. Webster, Met. Based Drugs
(1994) 299.
[16] D. Kovala-Demertzi, P. Tauridou, U. Russo, M. Gielen, Inorg. Chim. Acta 239
(1995) 177.
[17] C. Vetter, C. Wagner, J. Schmid, D. Steinborn, Inorg. Chim. Acta 359 (2006)
4326.
[18] P.J. Cox, A. Kaltzoglou, P. Aslanidis, Inorg. Chim. Acta 359 (2006) 3183.
[19] A. Kaltzoglou, P.J. Cox, P. Aslanidis, Inorg. Chim. Acta 358 (2005) 3048.
[20] P. Aslanidis, P.J. Cox, S. Divanidis, P. Karagiannidis, Inorg. Chim. Acta 357
(2004) 1063.
[21] A.A. Isab, S. Ahmad, M. Arab, Polyhedron 24 (2005) 435.
[22] T.S. Lobana, R. Sharma, R. Sharma, S. Mehra, A. Castineiras, P. Turner, Inorg.
Chem. 44 (2005) 1914.
(i-C, J = 10.0 Hz), 129.1 (p-C, J = 9.3 Hz) and 128.9 ppm (m-C,
J = 10.8 Hz) [57], which are not much affected in complexes 1, 3
and 4 (Section 2).
Each of complexes 1–4 showed one 31P NMR signal with coordi-
nation shifts in the range,
Dd, 6.38–11.34 ppm. These shifts are
similar to those shown by other complexes with N, S-donors re-
ported in literature [57,59]. Complex 2 showed one additional
weak signal with
is in equilibrium with its sulfur bridged dimer, [Ag2Cl2(
D
d = 34.9 ppm, and it suggests that monomer 2
-S-mim-
l
zSH)2(PPh3)2], a phenomenon often exhibited by coinage metal ha-
lide complexes with N, S-donors [57,59,62]. The poor solubility of
complexes 5–7 precluded their NMR recording.
[23] T.S. Lobana, R. Sharma, G. Hundal, R.J. Butcher, Inorg. Chem. 45 (2006) 9402.
[24] T.S. Lobana, R. Sharma, R. Sharma, R.J. Butcher, Z. Anorg. Allg. Chem. 634 (2008)
1785.
6. Conclusion
[25] T.S. Lobana, R. Sultana, G. Hundal, A. Castineiras, Polyhedron 28 (2009) 1573.
[26] T.S. Lobana, R. Sultana, A. Castineiras, R.J. Butcher, Inorg. Chim. Acta 362 (2009)
5265.
[27] E.S. Raper, J.R. Creighton, J.D. Wilson, W. Clegg, A. Milne, Inorg. Chim. Acta 155
(1989) 85.
[28] D. Li, Y.-F. Luo, T. Wu, S.W. Ng, Acta Crystallogr., Sect. E: Struct. Rep. 60 (2004)
m726.
[29] P. Karagiannidis, P. Aslanidis, S. Papastefanou, D. Mentzafos, A. Hountas, T.
Terzis, Polyhedron 9 (1990) 981.
[30] Z. Baoguang, L. Xioyun, Y. Yunhua, Wuli Huaxue Xuebao (Chin.) Acta Phys.
Chim. Sin 1 (1985) 289.
[31] M. Maekawa, S. Kitagawa, Y. Nozaka, M. Munakata, T. Kuroda-Sowa, Anal. Sci.
9 (1993) 887.
[32] P. Aslanidis, S.K. Hadjikakou, P. Karagiannidis, P.J. Cox, Inorg. Chim. Acta 271
(1998) 57.
[33] S.K. Hadjikakou, P. Aslanidis, P. Karagiannidis, D. Mentzafos, A. Terzis, Inorg.
Chim. Acta 186 (1991) 199.
[34] S. Ramaprabhu, E.A.C. Lucken, G. Bernardinelli, J. Chem. Soc., Dalton Trans.
(1995) 115.
[35] S.K. Hadjikakou, P. Aslanidis, P. Karagiannidis, D. Mentzafos, A. Terzis,
Polyhedron 10 (1991) 935.
[36] S.K. Hadjikakou, P. Aslanidis, P.D. Akrivos, P. Karagiannidis, B. Kojic-Prodic, M.
Luic, Inorg. Chim. Acta 197 (1992) 31.
[37] S. Saithong, C. Pakawatchai, J.P.H. Charmant, Acta Crystallogr., Sect. E: Struct.
Rep. 63 (2007) m857.
Coordination chemistry of silver(I) chloride with imdzSH is dif-
ferent from that of copper(I) chloride. While copper(I) chloride
formed a polymer, {Cu8(
silver(I) chloride did not yield a similar crystalline product, rather
it formed a mononuclear complex, [Ag(
1-S-imdzSH)(PPh3)2Cl] 1
with PPh3 as coligand. Other thio-ligands, namely, mimzSH and
tzdSH, also formed mononuclear complexes [Ag(
1-S-mim-
zSH)(PPh3)2Cl] 2 and [Ag(
1-S-tzdSH)(PPh3)2Cl] 3. These mixed-li-
l3-imdzSH)4(l-imdzSH)4(g
1-Cl)8}n [26],
g
g
g
gand complexes make new addition to silver(I) halide–heterocyclic
thioamide chemistry as only one mixed-ligand silver(I) complex,
[Ag(
date
tzdSH)2(PPh3)2](NO3)2 4 makes new addition to existing only two
mixed-ligand silver(I) dinuclear complexes [Ag2X2( -S-
g
1-S-pySH)(PPh3)2Cl] (pySH = pyridine-2-thione) is known to
[46].
Similarly,
complex
[Ag2(g l-S-
1-S-tzdSH)2(
l
pySH)2(PPh3)2] (X = Cl, Br) [47]. 2,4-dithiouracil did not yield any
crystalline product with silver(I) chloride and with copper(I) ha-
lides, it did not yield mononuclear complexes similar to 1–3, rather
it formed polymeric complexes (5–7). These complexes represent
first examples of polymers of 2,4-dithiouracil in its coordination
chemistry.
[38] D. Jia, Y. Zhang, J. Deng, M. Ji, J. Coord. Chem. 60 (2007) 833.
[39] G.A. Bowmaker, N. Chaichit, C. Pakawatchai, B.W. Skelton, A.H. White, Dalton
Trans. (2008) 2926.
[40] M.B. Ferrari, G.G. Fava, M.E.V. Tani, Cryst. Struct. Commun. 10 (1981) 571.
[41] J.S. Casas, E.G. Martinez, A. Sanchez, A.S. Gonzalez, J. Sordo, U. Casellato, R.
Graziani, Inorg. Chem. 241 (1996) 117.
Acknowledgment
[42] L.P. Battaglia, A.B. Corradi, M. Nardelli, Croat. Chem. Acta 57 (1984) 545.
[43] X.-Y. Wei, W. Chu, R.-D. Huang, S.-W. Zhang, H. Li, Q.-L. Zhu, Inorg. Chem.
Commun. 9 (2006) 1161.
[44] A. Beheshti, W. Clegg, N.R. Brooks, F. Sharafi, Polyhedron 24 (2005) 435.
[45] P.J. Cox, P. Aslanidis, P. Karagiannidis, S. Hadjikakou, Inorg. Chim. Acta 310
(2000) 268.
Financial assistance from UGC (SAP) (to RS) is gratefully
acknowledged. The authors thank Matthias Zeller of Youngstown
State University, USA for his contribution in X-ray crystallography.
Appendix A. Supplementary material
[46] P. Karagiannidis, P. Aslanidis, S.C. Kokkou, C.J. Cheer, Inorg. Chim. Acta 172
(1990) 247.
[47] T.S. Lobana, P.K. Bhatia, E.R.T. Tiekink, J. Chem. Soc., Dalton Trans. (1989) 749.
[48] K. Yamanari, Y. Kushi, A. Fuyuhiro, S. Kaizaki, J. Chem. Soc., Dalton Trans.
(1993) 403.
[49] D.R. Corbin, L.C. Francesconi, D.N. Hendrickson, G. Stucky, J. Chem. Soc., Chem.
Commun. (1979) 248.
[50] C. Landgrafe, W.S. Sheldrick, J. Chem. Soc., Dalton Trans. (1996) 989.
[51] P. Aslanidis, P.J. Cox, A. Kaltzoglou, A.C. Tsipis, Eur. J. Inorg. Chem. (2006) 334.
[52] G. Brauer, Handbook of Preparative Chemistry, second ed., vol. 2, Academic
Press, New York, 1965.
[53] Bruker, SMART, SAINT and XREP, Area Detector Control, and Data Integration
and Reduction Software, Bruker Analytical X-ray Instruments, Inc., Madison,
Wisconsin, USA, 1995.
CCDC 761991, 676827, 761992, 761993, 741296, 741297,
741298 for compounds 1–7 respectively contains the supplemen-
tary crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data
Supplementary data associated with this article can be found, in
References
[54] Bruker, APEX2 Software, Bruker AXS Inc., V2.0-1, Madison, Wisconsin, USA,
2005.
[1] E.S. Raper, Coord. Chem. Rev. 61 (1985) 115.
[55] G.M. Sheldrick, SADABS. Program for Empirical Absorption Correction of Area
Detector Data, University of Goettingen, Germany, 1997.
[56] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
[57] T.S. Lobana, S. Khanna, R. Sharma, G. Hundal, R. Sultana, M. Chaudhary, R.J.
Butcher, A. Castineiras, Cryst. Growth Des. 8 (2008) 1203.
[58] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure
and Reactivity, fourth ed., Harper Collins, New York, 1993.
[59] J. Sola, A. Lopez, R.A. Coxall, W. Clegg, Eur. J. Inorg. Chem. (2004) 4871.
[60] T.S. Lobana, A. Castineiras, Polyhedron 21 (2002) 1603.
[61] M. Hong, W. Su, R. Cao, W. Zhang, J. Lu, Inorg. Chem. 38 (1999) 600.
[62] T.S. Lobana, Rekha, R.J. Butcher, A. Castineiras, E. Bermejo, P.V. Bharatam,
Inorg. Chem. 45 (2005) 1535.
[2] E.S. Raper, Coord. Chem. Rev. 153 (1996) 199.
[3] E.S. Raper, Coord. Chem. Rev. 129 (1994) 91.
[4] E.S. Raper, Coord. Chem. Rev. 165 (1997) 475.
[5] P.D. Akrivos, Coord. Chem. Rev. 213 (2001) 181.
[6] J.A. Garcia-Vazquez, J. Romero, A. Sousa, Coord. Chem. Rev. 193 (1999) 691.
[7] D. Katiyar, V.K. Tiwari, R.P. Tripathi, A. Srivastava, V. Chaturvedi, R. Srivastava,
B.S. Srivastava, Bioorg. Med. Chem. 11 (2003) 4369.
[8] K.H. Scheit, E. Gartner, Biochim. Biophys. Acta 182 (1969) 10.
[9] M.N. Lipsett, J. Biol. Chem. 240 (1965) 3975.
[10] J.A. Carbon, L. Hung, D.S. Jones, Proc. Natl. Acad. Sci. USA 53 (1965) 979.
[11] G. Thomas, A. Favre, Biochem. Biophys. Res. Commun. 66 (1975) 1454.
[12] M. Daune, in: H. Sigel (Ed.), Metal Ions in Biological Systems, vol. 3, Marcel
Dekker, New York, NY., 1974, p. 1.