54=[354]
H.-J. Choi et al.
protection reagent was unnecessary and easy workup of filtration to get rid of catalyst
and concentration allowed to access the catalytic hydrogenation. However, it also has
drawback on reproducibility, but it has advantage to scale up without any limiting
factors if reactions were carefully monitored to avoid over-hydrogenation.
Summary
An arylamine monomer 1 with styrylpydine moiety devised for hole-injection conju-
gated polyarylamine in OLED was efficiently synthesized. Two reaction approaches,
protection=deprotection of amine group and catalytic hydrogenation of nitro precur-
sor were comparatively performed. Both synthetic routes afforded reasonable yields
of the arylamine product 1 in three consecutive reaction steps, ether formations of
phenolic nucleophile with hexylene dibromide and deprotection of BOC-protected
precursor or reduction of nitro precursor. BOC-Protection synthetic route is useful
to obtain pure product in small reaction scale, but catalytic hydrogenation approach
are economically viable from the precisely controlling complete hydrogention of
selective reduction with Lindlar catalyst. An optimized and reproducible preparation
of a valuable photo-cross linking moiety of styrylpyridine was also reestablished
based on the rationalized reaction mechanism.
References
[1] Stolka, M., Yanus, J. F., & Pai, D. M. (1984). J. Phys. Chem., 88, 4707.
[2] Sato, Y., Ichinose, S., & Kanai, H. (1996). In Proceedings of the 8th International Work-
shop on Inorganic and Organic Electroluminescence, Berlin, p. 255.
[3] (a) Shirota, Y. (1997). Proc., SPIE Int. Soc. Opt. Eng., 3148, 186; (b) Shirota, Y.,
Kuwabara, Y., Inada, H., Wakimoto, T., Nakada, H., Yonemoto, Y., Kawami, S., &
Imai, K. (1994). Appl. Phys. Lett., 65, 807.
[4] (a) Gustafsson, G., Cao, Y., Tracy, G. M., Klavetter, F., Colaneri, N., & Heeger, A. J.
(1992). Nature (London), 357, 477; (b) Yang, Y., Westerweele, E., Zhang, C., Smith, P.,
& Heeger, A. J. (1995). J. Appl. Phys., 77, 694.
[5] Kulkarni, A. P., Tonzola, C. J., Babel, A., & Jenekhe, S. A. (2004). Chem. Mater., 16, 4556.
[6] Herguth, P., Jiang, X., Liu, M. S., & Jen, A. K.-Y. (2002). Macromolecules, 35, 6094.
[7] Jin, S. H., Jung, J. E., Yeom, I. S., Moon, S. B., Koh, K., Kim, S. H., & Gal, Y. S. (2002).
Eur. Polym. J., 38, 895.
[8] Park, E. J., Kwon, H. Y., & Park, L. S. (2008). In Proceedings of Digest of Technical
Papers of IMID, Seoul, p. 458.
[9] (a) Schlummer, B., & Scholz, U. (2005). Speciality Chem. Mag., 25, 22; (b) Schlummer,
B., & Scholz, U. (2004). Adv. Syn. Cat., 346, 1599; (c) Wolfe, J. P., Tomori, H., Sadighi,
J. P., Yin, J., & Buchwald, S. L. (2000). J. Org. Chem., 65, 1158.
[10] de Jong, M. P., van Ijzendoorn, L. J., & de Voigt, M. J. A. (2000). Appl. Phys. Lett., 77,
2255.
[11] Horwitz, L. (1956). J. Org. Chem., 21.
[12] (a) Yamaki, S., Nakagawa, M., Morino, S., & Ichimura, K. (1999). J. Photopolymer Sci.
Tech., 12, 279; (b) Yamaki, S., Nakagawa, M., Morino, S., & Ichimura, K. (2001).
Macromol. Chem. Phys., 202, 325.
[13] (a) Kim, W.-S., Lee, J.-W., Kwak, Y.-W., Lee, J. K., Park, Y.-T., & Yoh, S.-D. (2001).
Polymer J. (Tokyo, Japan), 33, 643; (b) Kwak, G., Kim, M.-W., Park, D.-H., Kong,
J.-Y., Hyun, S.-H., Kim, W.-S. (2008). J. Polymer Sci. (A) A: Polymer Chem., 46, 5371.
[14] (a) Hubacher, M. H., & Doernberg, S. (1964). J. Pharm. Sci., 53, 1067; (b) Chen, G.,
Shan, W., Wu, Y., Ren, L., Dong, J., & Ji, Z. (2005). Chem. Pharm. Bull., 53, 1587.