3540
T. Mitamura, A. Ogawa / Tetrahedron Letters 51 (2010) 3538–3541
Table 3
Supplementary data
The palladium-catalyzed [2+2+2] cycloaddition of alkynyl selenidea,b
Entry
Alkynyl selenide
Product
Yieldc (%)
Supplementary data (general experimental procedure and char-
acterization date for alkynylselenation products, [2+2+2] cycload-
dition products, and new alkynyl selenides) associated with this
article can be found, in the online version, at doi:10.1016/
R1
SePh
SePh
EtO2C
EtO2C
R1
CO2Et
CO2Et
1
1a
1a
1b
1g
1h
1i
R1 = H–
H–
4a
4a0
4b
4g
4h
4i
70
60
64
68
58
71
52
References and notes
2d
3
Me-
nPen-
MeO-
Cl-
1. For the review, see for example: (a) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T.
Chem. Rev. 2004, 104, 6255; (b) Perin, G.; Lenardão, E. J.; Jacob, R. G.; Panatieri,
R. B. Chem. Rev. 2009, 109, 1277; (c) Organoselenium Chemistry; Wirth, T., Ed.;
Springer: Berlin, 2000; Vol. 208; (d) Ogawa, A. In Main Group Metals in Organic
Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2,
p 813.
2. For recent reviews, see: (a) Ogawa, A. J. Organomet. Chem. 2000, 611, 463; (b)
Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205; (c) Beletskaya, I.; Moberg, C.
Chem. Rev. 2006, 106, 2320; (d) Kuniyasu, H.; Kambe, N. Chem. Lett. 2006, 35,
1320; (e) Kuniyasu, H.; Kambe, N. J. Synth. Org. Chem. Jpn. 2009, 67, 701; (f)
Kuniyasu, H. In Catalytic Heterofunctionalization; Togni, A., Grüzmacher, H.,
Eds.; Wiley-VCH: Weinheim, 2001; p 217.
3. For the transition-metal-catalyzed activation of Ch–Ch bond, see: (a) Kuniyasu,
H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc.
1991, 113, 9796; (b) Kondo, T.; Uenoyama, S.; Fujita, K.; Mitsudo, T. J. Am. Chem.
Soc. 1999, 121, 482; (c) Nishiyama, Y.; Kawamatsu, H.; Sonoda, N. J. Org. Chem.
2005, 70, 2551; (d) Ananikov, V. P.; Orlov, N. V.; Kabeshov, M. A.; Beletskaya, I.
P.; Starikova, Z. A. Organometallics 2008, 27, 4056.
4. For the transition-metal-catalyzed activation of Ch–H bond, see: (a) Ogawa, A.;
Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108; (b) Han, L.-B.;
Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080; (c) Cao, C.;
Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127, 17614; (d) Kamiya, I.;
Nishinaka, E.; Ogawa, A. J. Org. Chem. 2005, 70, 696; (e) Ananikov, V. P.; Orlov,
N. V.; Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Y.; Timofeeva, T. V. J. Am.
Chem. Soc. 2007, 129, 7252.
5. For the transition-metal-catalyzed activation of Ch–E bond, see: (a) Ishiyama,
T.; Nishijima, K.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 7219; (b)
Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1998, 120, 8249; (c) Han, L.-B.; Tanaka,
M. Chem. Lett. 1999, 28, 863; (d) Nishiyama, Y.; Kawamatsu, H.; Funato, S.;
Tokunaga, K.; Sonoda, N. J. Org. Chem. 2003, 68, 3599.
6. For the transition-metal-catalyzed activation of Ch–C bond, see: (a) Hirai, T.;
Kuniyasu, H.; Kato, T.; Kurata, Y.; Kambe, N. Org. Lett. 2003, 5, 3871; (b)
Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem.
Soc. 2005, 127, 9706; (c) Kuniyasu, H.; Kato, T.; Inoue, M.; Terao, J.; Kambe, N. J.
Organomet. Chem. 2006, 691, 1873; (d) Yamashita, K.; Takeda, H.; Kashiwabara,
T.; Hua, R.; Shimada, S.; Tanaka, M. Tetrahedron Lett. 2007, 48, 6655; (e)
Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem.
Soc. 2008, 130, 10504; (f) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.;
Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957; (g) Arisawa, M.; Suwa, K.;
Yamaguchi, M. Org. Lett. 2009, 11, 625.
4
5
6
7
1c
NC-
4c
SePh
SePh
R2
EtO2C
EtO2C
R2
CO2Et
CO2Et
8
9
1d
1j
R2
TMS-
=
nBu-
4d
4j
4k
41
4m
54
42
26
24
ND
10e
11e
12e
1k
11
1m
EtO2C–
MeOCH2–
Me2NCH2–
SeR3
SeR3
EtO2C
EtO2C
Ph
Ph
CO2Et
CO2Et
13
14
15
16
17
1n
1e
1f
1o
1p
R3 = 4-MeO-C6H4–
4-Me-C6H4–
4-CI-C6H4–
4-F-C6H4–
Et-
4n
4e
4f
4o
4p
72
63
60
59
85
a
Reaction conditions: 1 (0.2 mmol), 2a (3 equiv), PdCl2(PPh3)2 (10 mol %), tolu-
ene (1 mL), 115 °C, 16 h.
The corresponding diselenide and/or monoselenide were obtained as
byproducts.
b
c
Isolated yield.
d
Dimethyl acetylenedicarboxylate (2b, 3 equiv) was used in place of 2a.
Instead of the desired reaction, [2+2+2] cycloaddition of three molecules of 2a
e
took place predominantly, and the starting material 1 was recovered unchanged.
7. For the transition-metal-catalyzed activation of C–S bond, see: (a) Kuniyasu,
H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc.
2000, 122, 2375; (b) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am.
Chem. Soc. 2001, 123, 2899; (c) Kamiya, I.; Kawakami, J.; Yano, S.; Nomoto, A.;
Ogawa, A. Organometallics 2006, 25, 3562; (d) Hua, R.; Takeda, H.; Onozawa, S.;
Abe, Y.; Tanaka, M. Org. Lett. 2007, 9, 263; (e) Yamashita, F.; Kuniyasu, H.;
Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101; (f) Minami, Y.; Kuniyasu, H.;
Kambe, N. Org. Lett. 2008, 10, 2469; (g) Arisawa, M.; Tagami, Y.; Yamaguchi, M.
Tetrahedron Lett. 2008, 49, 1593; For the insertion of alkynes into an S–Pt Bond,
see: (h) Kuniyasu, H.; Takekawa, K.; Yamashita, F.; Miyafuji, K.; Asano, S.; Takai,
Y.; Ohtaka, A.; Tanaka, A.; Sugoh, K.; Kurosawa, H.; Kambe, N. Organometallics
2008, 27, 4788.
8. For the synthesis transition-metal complex of alkynyl selenide, see: (a) Hill, A.
F.; Hulkes, A. G.; White, A. J. P.; Williams, D. J. Organometallics 2000, 19, 371; (b)
Taher, D.; Pritzkow, H.; Walfort, B.; Lang, H. J. Organomet. Chem. 2006, 691, 793.
9. For the transition-metal catalyzed reaction of alkynyl selenide used as
acetylene, see: (a) Huang, X.; Sun, A. J. Org. Chem. 2000, 65, 6561; (b)
Koketsu, M.; Yang, H. O.; Kim, Y. M.; Ichihashi, M.; Ishihara, H. Org. Lett. 2001, 3,
1705; (c) Kim, H.; Lee, C. J. Am. Chem. Soc. 2005, 127, 10180; (d) Cai, M.; Wang,
Y.; Hao, W. Eur. J. Org. Chem. 2008, 2983.
SPh
PdCl2(PPh3)2 (10 mol%)
toluene, 115oC, 16 h
EtO2C
EtO2C
Ph
SPh
+
2a
ð1Þ
Ph
CO2Et
CO2Et
6a, 40%
5a
3 equiv
In summary, we have developed a new palladium-catalyzed
reaction of alkynyl selenides with acetylenedicarboxylates. Alky-
nylselenation of acetylenedicarboxylates with alkynyl selenides
has been attained by use of Pd(OAc)2/P(o-Tol)3/K2CO3/H2O-cata-
lytic system, leading to alkynylvinyl selenides. In contrast, the
treatment of alkynyl selenides with PdCl2(PPh3)2 catalyst in the
presence of acetylenedicarboxylates, has been found to afford
multisubstituted aryl selenides selectively via the [2+2+2] cycload-
dition reaction.
10. Alkynylvinyl selenides can be converted into the corresponding selenophene
derivatives, see: (a) Takimiya, K.; Kunugi, Y.; Konda, Y.; Ebata, H.; Toyoshima,
Y.; Otsubo, T. J. Am. Chem. Soc. 2006, 128, 3044; (b) Kesharwani, T.; Worlikar, S.
A.; Larock, R. C. J. Org. Chem. 2006, 71, 2307; (c) Alves, D.; Luchese, C.; Nogueira,
C. W.; Zeni, G. J. Org. Chem. 2007, 72, 6726; (d) Stein, A. L.; Alves, D.; da Rocha, J.
T.; Nogueira, C. W.; Zeni, G. Org. Lett. 2009, 10, 4983.
Acknowledgments
This work is supported by Grant-in-Aid for Scientific Research
(B, 19350095), from the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan, and Kyoto-Advanced Nanotechnology
Network. T.M. also thanks Japan Society for the Promotion of Sci-
ence (JSPS) for the Research Fellowship for Young Scientists.
11.
A plausible pathway for the palladium-catalyzed alkynylselenation may
include the following steps (Eq. 2): (1) the oxidative addition of 1 into Pd
complex to form palladium selenide species A; (2) the sequential
selenopalladation or alkynylpalladation of 2; (3) the reductive elimination of
alkynylvinyl selenide 3 with regeneration of the Pd catalyst.