A.A. Khandar et al. / Inorganica Chimica Acta 363 (2010) 4080–4087
4087
[4] J.S. Fossey, C.J. Richards, Tetrahedron Lett. 44 (2003) 8773.
consistent with the observed broad band appeared in the visible
region 620–670 nm, which can be assigned to the transitions from
[5] H. Kwong, L. Cheng, W. Lee, J. Mol. Catal. A: Chem. 150 (1999) 23.
[6] L. El-Sayed, H.A.M. Al-Gwidi, Energy Fuels 14 (2000) 179.
[7] P.S. Subramanian, E. Suresh, D. Srinivas, Inorg. Chem. 39 (2000) 2053.
[8] Z. Yang, R. Yang, F. Li, K. Yu, Polyhedron 19 (2000) 2599.
d2, dyz,xz and pimine to dx2ꢀy2
.
z
[9] M.R.A. Pillai, G. Samuel, S. Banerjee, B. Mathew, H.D. Sarma, S. Jurisson, Nucl.
Med. Biol. 26 (1999) 69.
4. Cyclic voltammetry
[10] M.R.A. Pillai, K. Kothari, B. Mathew, N.K. Pilkwal, S. Jurisson, Nucl. Med. Biol. 26
(1999) 233.
[11] M.R.A. Pillai, K. Kothari, Sh. Banerjee, G. Samuel, M. Suresh, H.D. Sarma, S.
Jurisson, Nucl. Med. Biol. 26 (1999) 555.
[12] M.L. Golden, C.M. Whaley, M.V. Rampersad, J.H. Reibenspies, R.D. Hancock,
M.Y. Darensbourg, Inorg. Chem. 44 (2005) 875.
[13] M. Cushmam, D. Yang, J.T. Mihalic, J. Chen, S. Gerhardt, R. Huber, M. Fischer, K.
Kis, A. Bacher, J. Org. Chem. 67 (2002) 6871.
[14] P.A.N. Ready, M. Nethaji, A.R. Chakravarty, Inorg. Chem. 41 (2002) 450.
[15] P.L. Holland, W.B. Tolman, J. Am. Chem. Soc. 122 (2000) 6331.
[16] Y.J. Kim, S.O. Kim, Y.I. Kim, S.N. Choi, Inorg. Chem. 40 (2001) 4481.
[17] D.H. Nguyen, H. Hsu, M. Millar, S.A. Koch, J. Am. Chem. Soc. 118 (1996) 8963.
[18] C. Qiao, K. Ling, E.M. Shepard, D.M. Dooley, L.M. Sayrer, J. Am. Chem. Soc. 128
(2006) 6206.
[19] B.P. Hay, R.D. Hancock, Coord. Chem. Rev. 212 (2001) 61.
[20] A.T. Chaviara, E.E. Kioseoglou, A.A. Pantazaki, A.C. Tsipis, P.A. Karipidis, D.A.
Kyriakidis, C.A. Bolos, J. Inorg. Biochem. 102 (2008) 1749.
[21] G. Brewer, C. Luckett, Inorg. Chim. Acta 358 (2005) 239.
[22] M.G. Bhowon, H. Li Kam Wah, A. Dosieah, M. Ridana, O. Ramalingum, D.
Lacour, Synth. React. Inorg. Met.-Org. Chem. 34 (2004) 1.
[23] A. Sharma, A. Arora, K. Mathur, R.P. Mathur, Asian J. Chem. 15 (2003) 999.
[24] A. Sharma, A. Arora, K. Mathur, R.P. Mathur, Asian J. Chem. 15 (2003) 1091.
[25] Z.H. Chohan, H. Pervez, A. Rauf, A. Scozzafava, C.T. Supuran, J. Enzyme Inhib.
Med. Chem. 17 (2002) 117.
The three ligands H2L2, H2L3 and H2L4 are irreversibly oxidized
in DMF solvent. The respective anodic peak potentials at scan rate
0.05 Vsꢀ1 are approximately 1.21, 1.24 and 1.22 V, respectively.
The two ligands H2L1 and H2L2 also show irreversible reduction
waves at approximately ꢀ1.27 and ꢀ1.8 V, respectively. Increasing
scan rates give a positive peak potential shift for anodic peaks and
a negative peak potential shift for cathodic peaks as well as
increasing in current intensity.
The electrochemical properties of the nickel complexes were
investigated in DMF with 0.1 M LiClO4 as a supporting electrolyte:
cyclic voltammetry data are summarized in Table 5. The two NiL1
and NiL2 complexes exhibit irreversible reduction waves but no
anodic wave is observed. The NiL4 complex, in contrast, exhibits
only an irreversible anodic peak. The reduction of NiL1 and NiL2
(scan rate 0.05 Vsꢀ1
)
occurred at approximately ꢀ0.71 and
ꢀ0.78 V, respectively, while the oxidation of NiL4 occurs at
0.86 V. The NiL3 complex shows a quasi-reversible anodic peak in
0.4 V and the corresponding cathodic peak in ꢀ0.92 V (Fig. 3).
These results suggest that the complexes with softer thioethers
are more easily oxidized than their oxygen analogs and stabilize
higher oxidation states [51]. For low-oxidation states S ligands
are expected to destabilize this state, as it is observed.
[26] A. Datta, N. Kumar Karan, S. Mitra, V. Gramlich, J. Chem. Crystallogr. 33 (2003)
579.
[27] E. Kwiatkowski, M. Klein, G. Romanowski, Inorg. Chim. Acta 293 (1999) 115.
[28] C.A. Bolos, G.S. Nikolov, L. Ekateriniadou, A. Kortsaris, D.A. Kyriakidis, Met.
Based Drug. 5 (1998) 323.
[29] C.I. Simionescu, M. Grigoras, I. Cianga, N. Olaru, Eur. Polymer J. 34 (1998) 891.
[30] M.A. Ali, K.R. Fernando, D. Palit, M. Nazimuddin, Transition Met. Chem. 20
(1995) 19.
[31] E. Kwiatkowski, M. Kwiatkowski, A. Olechnowicz, G. Bandoli, J. Chem.
Crystallogr. 23 (1993) 473.
5. Conclusion
[32] A.S. Rothin, H.J. Banbery, F.J. Berry, T.A. Hamor, C.J. Jones, J.A. Mccleverty,
Polyhedron 8 (1989) 491.
[33] N.A. Bailey, A. Barrass, D.E. Fenton, M.S. Leal Gonzalez, R. Moody, C.O.
Rodriguez de Barbarin, J. Chem. Soc., Dalton Trans. (1984) 2741.
[34] A.A. Khandar, S.A. Hosseini-Yazdi, S.A. Zarei, Inorg. Chim. Acta 358 (2005)
3211.
[35] Bruker SAINT-PLAS, Version 6.01, Data Reduction and Correction Program, Bruker
AXS, Madison, WI, 1998.
[36] G.M. Sheldrick, SADABS, Version 2.01, Bruker/Siemens Area Detector Absorpsion
Correction Program, Bruker AXS, Madison, WI, 1998.
In the present work, we have synthesized and characterized
new hexadentate ligands and their complexes with nickel(II) and
copper(II) ions. Physico-chemical measurements confirm the 1:1
metal to ligand stoichiometry of the complexes. UV–Vis spectra
and X-ray crystal structures indicate that the nickel complexes
are in the distorted octahedral geometry while the copper com-
plexes have a seesaw sawhorse coordination geometry. DFT calcu-
lations support that Npyrrole–Cu bond lengths are shorter than the
[37] G.M. Sheldrick, SHELXTL, version 5.10, Structure Determination software Suite,
Bruker AXS, Madison, WI, 1998.
N
imine–Cu bonds and the calculated wavelengths for electronic
[38] International Tables for Crystallography, Tables 4.2.6.8 and 6.1.1.4, vol. C,
Kluwer Academic Publishers, Dordrecht, Netherlands, 1992.
[39] P.A. Tasker, E.B. Fleischer, J. Am. Chem. Soc. 92 (1970) 7072.
[40] M. Kandaz, I. Yilmaz, S. Keskin, A. Koca, Polyhedron 21 (2002) 825.
[41] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, GAUSSIAN-03, Revision B.03, Gaussian Inc., Pittsburgh, PA, 2003.
[42] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
transitions are in consistent with the observed broad absorption.
Cyclic voltammetry results can suggest that softer thioethers are
more easily oxidized than their oxygen analogs and stabilize higher
oxidation states.
Acknowledgement
We are grateful to University of Tabriz Research Council for the
financial support of this research.
Appendix A. Supplementary material
CCDC 611930 and 678398 contain the supplementary crystallo-
graphic data for NiL3 and CuL2. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
[43] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[44] P. Comba, A. Lienke, Inorg. Chem. 40 (2001) 5206.
[45] M.E. Casida, Recent developments and applications in modern density
functional theory, in: J.M. Seminario (Ed.), Theoretical and Computational
Chemistry, vol. 4, Elsevier, Amsterdam, 1996.
[46] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[47] R.N. Patel, N. Singh, V.L.N. Gundla, Polyhedron 25 (2006) 3312.
[48] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier,
Amsterdam, 1984.
References
[49] G. Rajsekhar, C.P. Rao, P. Saarenketo, K. Nattinen, K. Rissanen, New J. Chem. 28
(2004) 75.
[50] L. Yang, D.R. Powell, R.P. Houser, J. Chem. Soc., Dalton Trans. (2007) 955.
[51] G.J. Grant, M.W. Jones, K.D. Loveday, D.G. VanDerveer, W.T. Pennington, C.T.
Eagle, L.F. Mehne, Inorg. Chim. Acta 300–302 (2000) 250.
[1] R. Drozdzak, B. Allaert, N. Ledoux, I. Dragutan, V. Dragutan, F. Verpoort, Coord.
Chem. Rev. 249 (2005) 3055.
[2] E. Tsuchida, K. Oyaizu, Coord. Chem. Rev. 237 (2003) 213.
[3] S. Foster, A. Rieker, K. Maruyama, K. Murata, A. Nishinaga, J. Org. Chem. 61
(1996) 3320.