R. F. Soh et al. · Antibacterial Ellagic Acid Derivatives
[α]2D0 = +66.6◦ (c = 0.3, DMSO). – IR (KBr): νmax
1075
=
158.7 (C-7ꢀ), 163.6 (C-7ꢀꢀꢀ), 166.4 (C=O), 167.5 (C=O),
3420 (O–H), 1748 (C=O), 1611 (C=C), 1356, 1085 (C – O) 169.3 (C=O), 169.5 (C=O), 170.9 (C=O).
cm−1. – 1H NMR ([D6]DMSO) and 13C NMR ([D6]DMSO)
spectroscopic data, see Table 1. – MS (EI, 70 eV): m/z (%) =
344 (100), 329 (17), 286 (12). – HRMS ((+)-ESI): m/z =
681.10664 (calcd. 681.10991 for C30H26O17Na, [M+Na]+).
Panconoside B peracetate (2a)
Yellow amorphous powder. – 1H NMR (500 MHz,
CDCl3): δ = 1.15 (d, J = 6.3 Hz, 3H, 6ꢀꢀꢀ-Me), 1.98, 2.00,
2.06, 2.09, 2.13, 2.16 (6 × s, 18 H, COMe), 3.89 (br t, J =
8.8 Hz, 1H, 5ꢀꢀ-H), 3.96 (m, 1H, 2ꢀꢀ-H), 4.06 (s, 3H, OMe),
4.10 (m, 1H, 6ꢀꢀb-H), 4.15 (m, 1H, 5ꢀꢀꢀ-H), 4.18 (m, 1H,
6ꢀꢀa-H), 4.21 (s, 1H, 2ꢀꢀꢀ-H), 4.23 (s, 3H, OMe), 4.28 (s, 3H,
OMe), 5.05 (m, 1H, 3ꢀꢀꢀ-H), 5.08 (m, 1H, 4ꢀꢀ-H), 5.10 (m, 1H,
3ꢀꢀ-H), 5.16 (d, J = 1.3 Hz, 1H, 1ꢀꢀꢀ-H), 5.30 (d, J = 7.5 Hz,
1H, 1ꢀꢀ-H), 5.40 (t. J = 9.4 Hz, 1H, 4ꢀꢀꢀ-H), 7.71 (s, 1H, 5ꢀ-H),
7.86 (s, 1H, 5-H). – 13C NMR (125 MHz, CDCl3): δ = 17.5
(C-6ꢀꢀꢀ), 20.6, 20.7, 20.8, 20.9 (all COMe), 56.9 (OMe), 61.9
(C-6ꢀꢀ), 62.0 (OMe), 62.2 (OMe), 67.2 (C-5ꢀꢀꢀ), 68.3 (C-4ꢀꢀ),
68.4 (C-3ꢀꢀꢀ), 70.1 (C-2ꢀꢀꢀ), 70.9 (C-4ꢀꢀꢀ), 72.4 (C-2ꢀꢀ), 74.2
(C-3ꢀꢀ), 76.4 (C-5ꢀꢀ), 97.7 (C-1ꢀꢀ), 99.3 (C-1ꢀꢀꢀ), 107.9 (C-5ꢀ),
112.2 (C-5), 112.6 (C-1), 113.1 (C-1ꢀ), 113.7 (C-6ꢀ), 115.2
(C-6), 141.2 (C-3ꢀ), 141.4 (C-2), 141.9 (C-2ꢀ), 143.3 (C-3),
150.2 (C-4), 154.8 (C-4ꢀ), 158.4 (C-7), 158.6 (C-7ꢀ), 169.7
(C=O), 169.8 (C=O), 169.9 (C=O), 170.1 (C=O), 170.2
(C=O), 170.7 (C=O).
Panconoside B [3,3ꢀ,4ꢀ-tri-O-methylellagic acid 4-O-[α-L-
rhamnopyranosyl-(1→2)]-β-D-glucopyranoside] (2)
◦
Yellow crystals, m. p. 257 – 259 C. – UV/Vis (MeOH):
λ
max (lgεmax) = 255 (3.71), 360 (2.47) nm. – [α]2D0 = −80.0◦
(c = 0.5, MeOH). – IR (KBr): νmax = 3430 (O–H), 1749
(C=O), 1600 (C=C), 1090 cm−1. – 1H NMR ([D6]DMSO)
and 13C NMR ([D6]DMSO) spectroscopic data, see Ta-
ble 1. – MS (EI, 70 eV): m/z (%) = 344 (100), 329 (20), 286
(17). – HRMS ((+)-ESI): m/z = 675.15354 (calcd. 675.15686
for C29H32O17Na, [M+Na]+).
Panconoside A peracetate (1a)
Yellow amorphous powder. – 1H NMR (500 MHz,
CDCl3): δ = 2.03, 2.07, 2.10, 2.21, 2.32 (6 × s, 18 H,
COMe), 3.50 (br s, 1H, 5ꢀꢀ-H), 4.06 (s, 3H, OMe), 4.09 (m,
1H, 6ꢀꢀb-H), 4.15 (s, 3H, OMe), 4.24 (s, 3H, OMe), 4.29
(m, 1H, 6ꢀꢀa-H), 5.27 (d, J = 7.6 Hz, 1H, 1ꢀꢀ-H), 5.31 (t,
J = 9.4 Hz, 1H, 3ꢀꢀ-H), 5.54 (m, 1H, 4ꢀꢀ-H), 5.57 (m, 1H,
2ꢀꢀ-H), 7.73 (s, 1H, 5ꢀ-H), 7.78 (s, 2H, 2ꢀꢀꢀ/6ꢀꢀꢀ-H), 7.96 (s,
1H, 5-H). – 13C NMR (125 MHz, CDCl3): δ = 20.2, 20.6
(all COMe), 56.9 (OMe), 62.0 (2 × OMe), 62.3 (C-6ꢀꢀ), 68.0
(C-4ꢀꢀ), 70.7 (C-2ꢀꢀ), 72.7 (C-5ꢀꢀ), 73.4 (C-3ꢀꢀ), 100.0 (C-1ꢀꢀ),
108.0 (C-5ꢀ), 112.5 (C-5), 112.7 (C-1), 113.0 (C-1ꢀ), 113.7
(C-6ꢀ), 115.4 (C-6), 122.6 (C-2ꢀꢀꢀ/6ꢀꢀꢀ), 126.7 (C-1ꢀꢀꢀ), 139.4
(C-4ꢀꢀꢀ), 141.4 (C-3ꢀ), 141.6 (C-2ꢀ), 141.9 (C-2), 143.3 (C-3),
143.6 (C-3ꢀꢀꢀ/5ꢀꢀꢀ), 151.5 (C-4), 154.9 (C-4ꢀ), 158.4 (C-7),
Acknowledgements
The authors wish to acknowledge the German Academic
Exchange Service (DAAD) for awarding a grant to Soh
Fongang Rene´, the European Commission for awarding a
Marie Curie post doctoral fellowship to Bruno N. Lenta
(MIF1-CT-2006-021591), both at Bielefeld University, and
The Academy of Science for the Developing World (TWAS)
for awarding a research grant Nr. 07-141 LDC/CHE/AF/AC-
UNESCO FR: 3240171776 to our TWAS Research Unit.
[1] A. Aubreville, J. F. Leroy, Flore du Cameroun: Les
Sapindaceae, Vol. 1, Muse´um National d’Histoire Na-
turelle, Paris, 1973, pp. 3 – 118.
[2] M. Abdou-Shoer, G. E. Ma, X. H. Li, M. N. Koon-
chanok, R. L. Geahlin, C. J. Chang, J. Nat. Prod. 1993,
56, 967 – 969.
M. Litaudon, C. Lavaud, Phytochemistry 2005, 66,
825 – 835.
[8] D. D. Khac, S. Tran-Van, A. M. Campos, J.-Y. Lalle-
mand, M. Fetizon, Phytochemistry 1990, 29, 251 – 256.
[9] S. E. Drewes, J. V. Staden, Phytochemistry 1975, 14,
751 – 753.
[3] Z. Li, X. Li, D. Li, L. Gao, J. Xu, Y. Wang, Fitoterapia
2007, 78, 605 – 606.
[4] N. Rangkadilok, L. Worasuttayangkum, R. N. Bennett,
J. Satayavivad, J. Agri. Food Chem. 2005, 53, 1387 –
1392.
[5] H.-C. Huang, M.-D. Wu, W.-J. Tsai, S.-C. Liao, C.-C.
Liaw, L.-C. Hsu, Y.-C. Wu, Y.-H. Kuo, Phytochemistry
2008, 69, 1609 – 1616.
[10] M. Diaz, A. Gonzalez, I. Castro-Gamboa, D. Gonzalez,
C. Rossini, Carbohydr. Res. 2008, 343, 2699 – 2700.
[11] M. S. Alam, N. Chopra, M. Ali, M. Niwa, Phytochem-
istry 1996, 41, 1197 – 1200.
[12] B. T. Ngadjui, S. M. Mouncherou, J. F. Ayafor, B. L.
Sondemgam, F. Tillequin, Phytochemistry 1991, 30,
2809 – 2811.
[13] L. Cardona, B. Garcia, J. R. Pedro, J. Pe´rez, Phyto-
chemistry 1992, 31, 3989 – 3991.
[14] V. U. Ahmad, F. Ullah, J. Hussain, U. Farooq,
M. Zubair, M. T. H. Khan, M. I. Choudhary, Chem.
Pharm. Bull. 2004, 52, 1458 – 1461.
[6] M. L. D. Mesquita, P. Grellier, A. Blond, J.-P. Brouard,
J. E. D. Paula, L. S. Espindola, L. Mambu, Bioorg.
Med. Chem. 2005, 13, 4499 – 4506.
[7] L. Voutquenne, P. Guinot, C. Froissard, O. Thoison,
Unauthenticated
Download Date | 10/8/15 12:07 AM