Fan et al.
JOCNote
TABLE 1. Screening Studies of Organocatalytic Domino Reaction of
4-Hydroxylcoumarin 2a to R-Bromonitroalkene 3aa
entry
catalyst
base
solvent
yieldb (%)
eec (%)
1
2
3
4
5
6
7
1a
1b
1c
1d
1c
1c
1c
1c
1c
1c
1c
1c
1c
DCM
DCM
DCM
DCM
toluene
THF
CHCl3
CHCl3
CHCl3
CHCl3
CHCl3
CHCl3
CHCl3
35
52
58
64
54
42
62
quant
quant
quant
90
78
quant
21
51
64
53
64
60
71
70
73
69
92
83
78
FIGURE 2. Structures of bifunctional organocatalysts 1a-1d.
8d
9d
10d
11e
12f
13g
DABCO
DIPEA
DBU
DIPEA
DIPEA
DIPEA
a powerful tool for the rapid and efficient assembly of com-
plex structures from simple starting materials with mini-
mized waste production.7 Herein we present such an advance
and its direct application in an atom-economical synthesis of
chiral mono-, bi-, and tricyclic 2,3-dihydrofurans based on
the development of a new organocatalytic enantioselective
domino Michael-SN2 reaction of 1,3-dicarbonyl compounds
to R-bromonitroalkenes. Notably, the designed reactions are
highly regio-, chemo-, diastereo-, and enantioselective and
simultaneously give the desired multifunctional products
with two vicinal chiral carbon centers.
aUnless otherwise noted, reactions performed with 0.1 mmol of 2a,
0.12 mmol of 3a, 30 mol % of1 in 1 mL of solvent at 0 °C under N2 for48 h.
bIsolated yield. cDetermined by the chiral HPLC analysis. dAdding
e
f
30 mol % base. At -40 °C under N2 for 96 h. 20 mol % of 1c and
20 mol % of DIPEA. g50 mol % DIPEA.
organic synthesis, the R-bromonitroalkenes turned out to
be highly reactive and versatile.12,13 Especially, the bromo or
nitro group could behave as a better leaving group in the
reaction in comparison with bromoalkenes or nitroalkenes.
We envisioned that the bifunctional organocatalysts 1a-c
would be efficient catalysts for the domino Michael-SN2
reaction of 1,3-dicarbonyl compounds to R-bromonitroalk-
enes. Table 1 shows some screening results for the reaction of
2a with 3a. Initially, bifunctional thiourea 1a was investi-
gated as the organocatalyst, but only 21% ee was obtained
(Table 1, entry 1). To our delight, when the reaction was
catalyzed by Takemoto’s catalyst 1b, chiral 4aa was formed
in moderate yields and 51% ee (Table 1, entry 2). Subse-
quently, organocatalyst 1c, derived from quinine, was
proved to be superior to 1a, 1b, and 1d, and product 4aa
was obtained with up to 64% ee (Table 1, entry 3). Various
solvents were screened, and chloroform turned out to be
optimal to give the product in higher enantioselectivities and
yields (Table 1, entries 5-7). Interestingly, clean and quan-
titative product 4aa was obtained without affecting the ee
when achiral 1,4-diazabicyclo[2.2.2]octane (DABCO) was
used as additive (entry 8). Among the additives examined,
the use of N,N-diisopropylethylamine (DIPEA) as additive
gave the best result (entry 9). By lowing the temperature to
-40 °C, we got an excellent enantioselectivity (92% ee) and
yield (90%) in the presence of 1c (30 mol %) and N,N-
diisopropylethylamine (DIPEA, 30 mol %) while the reac-
tion time should be extended (entry 11). The ee was drama-
tically decreased when the catalyst loadings were reduced to
20 mol %, as well as when 50 mol % of DIPEA was added
(entries 12 and 13).
Recently, bifunctional thioureas 1a-c have appeared to
be efficient organocatalysts for asymmetric additions of
nucleophiles to nitroolefins (Figure 2).8-11 In the course of
our investigations on the use of R-bromonitroalkenes in
(7) (a) Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev.
2005, 105, 1001. (b) Tietze, L. F. Chem. Rev. 1996, 96, 115. (c) Nicolaou,
K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
(8) For 1,2-diaminohexane-derived bifunctional thioureas, see: (a) Oki-
no, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
(b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem.
Soc. 2005, 127, 119. (c) Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.- S.;
Wu, Y. Synlett 2005, 603. (d) Wang, J.; Li, H.; Yu, X.; Zu, L.; Wang, W. Org.
Lett. 2005, 7, 4293. (e) Fuerst, D. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2005,
127, 8964. (f) Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth,
R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2005, 127, 13798. (g) Xu, X.; Yabuta,
T.; Yuan, P.; Takemoto, Y. Synlett 2006, 137. (h) Wang, J.; Li, H.; Zu, L.;
Jiang, W.; Xie, H.; Duan, W.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652.
(9) (a) Xie, J.-W.; Fan, L.-P.; Su, H.; Li, X.-S.; Xu, D.-C. Org. Biomol.
Chem. 2010, 2117. (b) Xie, J.-W.; Yoshida, K.; Takasu, K.; Takemoto, Y.
Tetrahedron Lett. 2008, 49, 6910.
(10) For cinchona-derived bifunctional thioureas, see: (a) Tian, S.; Chen,
Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621.
(b) Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett. 2005, 7, 1967.
(c) Tillman, A. L.; Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191.
(d) Mattson, A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am.
Chem. Soc. 2006, 128, 4932. (e) McCooey, S. H.; Connon, S. J. Angew.
Chem., Int. Ed. 2005, 44, 6367. (f) France, S.; Shah, M. H.; Weatherwax, A.;
Wack, H.; Roth, J. P.; Lectka, T. J. Am. Chem. Soc. 2005, 127, 1206.
(g) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III;
Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831. (h) Marcelli, T.; van der Haas,
R. N. S.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2006,
45, 929. (i) Tan, B.; Chua, P. J.; Li, Y.; Zhong, G. Org. Lett. 2008, 10, 2437.
(j) Tan, B.; Lu, Y.; Zeng, X.; Chua, P. J.; Zhong, G.. Org. Lett. 2010, 12,
2682–2685.
(11) For pyrrolidine-thiourea, see: Cao, C.-L.; Ye, M.-C.; Sun, X.-L.;
Tang, Y. Org. Lett. 2006, 8, 2901–2904.
(12) Xie, J.-W.; Wang, Z.; Yang, W.-J.; Kong, L.-C.; Xu, D.-C. Org.
Biomol. Chem. 2009, 7, 4352.
(13) (a) Itoh, K.; Kishimoto, S.; Sagi, K. Can. J. Chem. 2009, 87, 760.
(b) Ganesh, M.; Namboothiri, I. N. N. Tetrahedron 2007, 63, 11973.
(c) Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett.
2007, 9, 1125. (d) McCooey, S. H.; McCabe, T.; Connon, S. J. J. Org. Chem.
2006, 71, 7494. (e) O’Neil; Cleator, I. A.; Southern, J. M.; Bickley, J. F.;
Tapolczay, D. J. Tetrahedron Lett. 2001, 42, 8251. (f) Itoh, K.; Kishimoto, S.
New J. Chem. 2000, 24, 347. (g) Sheremet, E. A.; Tomanov, R. I.; Trukhin,
E. V.; Berestovitskaya, V. M. Russ. J. Org. Chem. 2004, 40, 594.
With the optimal reaction conditions in hand, the scope of
the present organocatalytic asymmetric domino Michael-
SN2 reaction using catalyst 1c-DIPEA was extended to
various cyclic 1,3-dicarbonyl compounds (Figure 3) and R-
bromonitroalkenes. Only the anti-products were detected for
all the reactions. As illustrated in Table 2, for the reactions of
J. Org. Chem. Vol. 75, No. 24, 2010 8717