Journal of the American Chemical Society
COMMUNICATION
and EPSRC for a Senior Research Fellowship. S.N. thanks the
DFG for a research fellowship. We thank Inochem-Frontier
Scientific for the generous donation of boronic acids and boronic
esters.
2242. (e) Nakashima, K.; Imoto, M.; Sono, M.; Tori, M.; Nagashima, F.;
Asakawa, Y. Molecules 2002, 517–527. (f) Croft, K. D.; Ghisalberti, E. L.;
Hocart, C. H.; Jefferies, P. R.; Raston, C. L.; White, A. H. J. Chem. Soc.,
Perkin Trans. 1 1978, 1267–1270. (g) Nagashima, F.; Momosaki, S.;
Watanabe, Y.; Takaoka, S.; Huneck, S.; Asakawa, Y. Phytochemistry 1996,
42, 1361–1366. (h) Kim, Y. K.; Cool, L. G.; Zavarin, E. Phytochemistry
1994, 36, 961–965.
’ REFERENCES
(17) Dearden, M. J.; Firkin, C. R.; Hermet, J.-P. R.; O’Brien, P. J. Am.
Chem. Soc. 2002, 124, 11870–11871.
(18) Harmata, M.; Hong, X.; Schreiner, P. R. J. Org. Chem. 2008,
73, 1290–1296.
(1) Rodriguez, A. D.; Ramirez, C. J. Nat. Prod. 2001, 64, 100–102.
Erogorgiaene displayed 96% inhibition of Mycobacterium tuberculosis
H37Rv at 12.5 mg/mL.
(2) (a) Look, S. A.; Fenical, W.; Jacobs, R. S.; Clardy, J. Proc. Natl.
Acad. Sci. U.S.A. 1986, 83, 6238–6240. (b) Rodriguez, A. D.; Shi, Y.-P.
Tetrahedron 2000, 56, 9015–9023. (c) Rodriguez, A. D. Tetrahedron
1995, 51, 4571–4618 and references therein.
(3) Cesati, R. R., III; de Armas, J.; Hoveyda, A. H. J. Am. Chem. Soc.
2004, 126, 96–101.
(4) Davies, H. M. L.; Walji, A. M. Angew. Chem., Int. Ed. 2005, 44,
1733–1735.
(5) Yadav, J. S.; Basak, A. K.; Srihari, P. Tetrahedron Lett. 2007, 48,
2841–2843.
(6) (a) Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J.
Am. Chem. Soc. 2010, 132, 17096–17098. (b) For a recent application of
this methodology to the synthesis of (+)-sertraline and (+)-indatra-
line, see: Roesner, S.; Elford, T. G.; Casatejada, J. M.; Sonawane, R. P.;
Aggarwal, V. K. Org. Lett. 2011, in press.
(7) (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K.
Nature 2008, 456, 778–783. (b) Bagutski, V.; French, R. M.; Aggarwal,
V. K. Angew. Chem., Int. Ed. 2010, 49, 5142–5145.
(8) Indanyl-derived lithiated carbamates react with boronic esters
with very high selectivity (retention), but with lower selectivity with
boranes (retention still). Acyclic secondary benzylic lithiated carbamates
react with very high selectivity with both boronic esters (retention) and
boranes (inversion). Also, see ref 7.
(9) (a) Stymiest, J. S.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2007, 46, 7491. (b) Webster, M. P.; Partridge,
B. M.; Aggarwal, V. K. Org. Synth. 2011, 88, 247.
(10) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1996, 118, 2521–2522.
(11) Both oxidation and protodeboronation of the boronic ester
i
product arising from carbamate 4 or 6 and PrBR2 provided the same
result, indicating that the degradation in stereoselectivity was occurring
during the lithiation/borylation step.
(12) Aggarwal, V. K.; Fang, G. Y.; Ginesta, X.; Howells, D.; Zaja, M.
Pure Appl. Chem. 2006, 78, 215–229 and references therein.
(13) In the case of the small Me substituent, the short CÀB bond
length in the boronÀate complex makes it a stronger bond and so the
barrier to migration is greater (TS is reactant-like). See: (a) Bottoni, A.;
Lombardo, M.; Neri, A.; Trombini, C. J. Org. Chem. 2003, 68, 3397–
3405. (b) Larouche-Gauthier, R.; Fletcher, C. J.; Couto, I.; Aggarwal,
V. K. Chem. Commun. 2011, DOI: 10.1039/c1cc14469c. Note that
compression of the bond angles occurs in the migrating group at the
transition state for migration. This effect should be especially important
for a highly substituted migrating carbon and will disfavour the migration
of hindered groups. Thus, both methyl and thexyl groups, which clearly
are at the opposite extremes of steric demand, are both often nonmi-
grating groups. See ref 12 for a more complete discussion on the
complexity of the issues involved.
(14) (a) Fernandez, E.; Maeda, K.; Hooper, M. W.; Brown, J. M.
Chem.—Eur. J. 2000, 6, 1840–1846. (b) Hupe, E.; Marek, I.; Knochel, P.
J. Org. Chem. 2002, 4, 2861–2863.
(15) This reagent had previously been employed in protodeborona-
tion of boronic esters. See ref 6. We have now found that boranes can
also undergo protodeboronation with the same reagent.
(16) For selected examples, see: (a) Serra, S.; Fuganti, C. Tetrahe-
dron Lett. 2005, 46, 4769–4772. (b) Andersen, N. H.; Syrdal, D. D.;
Graham, C. Tetrahedron Lett. 1972, 13, 905–908. (c) Nagashima, F.;
Suda, K.; Asakawa, Y. Phytochemistry 1994, 37, 1323–1325. (d) Bunko,
J. D.; Ghisalberti, E. L.; Jefferies, P. R. Aust. J. Chem. 1981, 34, 2237–
16801
dx.doi.org/10.1021/ja207869f |J. Am. Chem. Soc. 2011, 133, 16798–16801