element in the ring closure to achieve the desired 1,6-
asymmetric induction. We envisioned that a disrotatory ring
closure through amidotrienes 7 in the upward direction could
be significantly favored with enhanced steric interaction
between the R1 group on the chiral amide and R3 [H versus
X] on the triene. We disclose here our success in developing
a stereoselective 6π-electron pericyclic ring closure of
halogen-substituted amidotrienes via a 1,6-remote asym-
metric induction.
Scheme 1. A New Torquoselective Manifold via 1,6-Induction
Our efforts commenced with electrophilic brominations
of the R-benzyl-substituted allenamide 812,13 as summarized
in Table 1. Initial attempts involved reacting 2 equiv of
Table 1. Electrophilic Bromination of Allenamides
halogen substituent at the C2-position of amidotrienes 5
allows for strategic functionalizations at C1 of 6 that is
originally the central allenic ꢀ-carbon; and (ii) more impor-
tantly, the halogen atom can serve as a key chirality relaying
entrya
equiv of 8
base
time [min]
yield [%]b
1
2
3
4
5
6
2.0
1.5
1.0
1.0
1.0
1.0
-
-
-
20
20
20
45
45
45
96
64
45
82
59
88
(4) Given the large volume of recent activities in allenamide chemistry,
for reports in 2009 and 2010, see: (a) Lohse, A. G.; Krenske, E. H.; Antoline,
J. E.; Houk, K. N.; Hsung, R. P. Org. Lett. 2010, ASAP (DOI: 10.1021/
ol1023745) . (b) Beccalli, E. M.; Bernasconi, A.; Borsini, E.; Broggini, G.;
Rigamonti, M.; Zecchi, G. J. Org. Chem. 2010, 75, 6923. (c) Hill, A. W.;
Elsegood, M. R. J.; Kimber, M. C. J. Org. Chem. 2010, 75, 5406. (d)
Persson, A. K. Å.; Ba¨ckvall, J.-E. Angew. Chem., Int. Ed. 2010, 49, 4624.
(e) Krenske, E. K.; Houk, K. N.; Lohse, A. G.; Antoline, J. E.; Hsung,
R. P. Chem. Science 2010, 1, 387. (f) Danowitz, A. M.; Taylor, C. E.;
Shrikian, T. M.; Mapp, A. K. Org. Lett. 2010, 12, 2574. (g) Zbieg, J. R.;
E.; McInturff, E. L.; Krische, M. J. Org. Lett. 2010, 12, 2514. (h) Cordier,
P.; Aubert, C.; Malacria, M.; Gandon, V.; Lacoˆte, E. Chem.sEur. J. 2010,
16, 9973. (i) Kimber, M. C. Org. Lett. 2010, 12, 1128. (j) Hashimoto, K.;
Horino, Y.; Kuroda, S. Heterocycles 2010, 80, 187. (k) Persson, A. K. Å.;
Johnston, E. V.; Ba¨ckvall, J.-E. Org. Lett. 2009, 11, 3814. (l) Skucas, E.;
Zbieg, J. R.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 5054. (m)
Armstrong, A.; Emmerson, D. P. G. Org. Lett. 2009, 11, 1547. (n) Beccalli,
E. M.; Broggini, G.; Clerici, F.; Galli, S.; Kammerer, C.; Rigamonti, M.;
Sottocornola, S. Org. Lett. 2009, 11, 1563. (o) Broggini, G.; Galli, S.;
Rigamonti, M.; Sottocornola, S.; Zecchi, G. Tetrahedron Lett. 2009, 50,
1447. (p) Lohse, A. G.; Hsung, R. P. Org. Lett. 2009, 11, 3430. (q) Lu, T.;
Hayashi, R.; Hsung, R. P.; DeKorver, K. A.; Lohse, A. G.; Song, Z.; Tang,
Y. Org. Biomol. Chem. 2009, 9, 3331.
Et3N
K2CO3
DABCO
a 100 mg of 4 Å MS per 0.1 mmol of 8 were used for entries 1-3; 50
mg of 4 Å MS per 0.1 mmol of 8 were used for entries 4-6. b Isolated
yield. The E stereochemistry was determined using NOE. c Using NBS
afforded 29% yield of 10.
allenamide 8 with pyridinium tribromide salt 9 in the
presence of 4 Å MS in CH2Cl2, and the desired 2-bromo-
amidodiene 1014 was found in an encouraging 96% yield
with exclusive E-stereoselectivity [entry 1]. In this reaction,
4 Å MS was utilized as a neutral acid scavenger for the
corresponding byproduct HBr.15 However, yields dropped
(5) Hayashi, R.; Hsung, R. P.; Feltenberger, J. B.; Lohse, A. G. Org.
Lett. 2009, 11, 2125.
(10) For examples of thermal allene isomerizations, see: (a) Crandall,
J. K.; Paulson, D. R. J. Am. Chem. Soc. 1966, 88, 4302. (b) Bloch, R.;
Perchec, P. L.; Conia, J.-M. Angew. Chem., Int. Ed. Engl. 1970, 9, 798. (c)
Jones, M.; Hendrick, M. E.; Hardie, J. A. J. Org. Chem. 1971, 36, 3061.
(d) Patrick, T. B.; Haynie, E. C.; Probat, W. J. Tetrahedron Lett. 1971, 27,
423. (e) Lehrich, F.; Hopf, H. Tetrahedron Lett. 1987, 28, 2697. (f) Meier,
H.; Schmitt, M. Tetrahedron Lett. 1989, 30, 5873.
(6) Hayashi, R.; Feltenberger, J. B.; Hsung, R. P. Org. Lett. 2010, 12,
1152.
(7) For reviews on chemistry of dienamides, see: (a) Overman, L. E.
Acc. Chem. Res. 1980, 13, 218. (b) Petrzilka, M. Synthesis 1981, 753. (c)
Campbell, A. L.; Lenz, G. R. Synthesis 1987, 421. (d) Krohn, K. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1582. (e) Enders, D.; Meyer, O. Liebigs
Ann. 1996, 1023.
(11) For examples of allenamide isomerizations, see: (a) Overman, L. E.;
Clizbe, L. A.; Freerks, R. L.; Marlowe, C. K. J. Am. Chem. Soc. 1981,
103, 2807. Also see: (b) Farmer, M. L.; Billups, W. E.; Greenlee, R. B.;
Kurtz, A. N. J. Org. Chem. 1966, 31, 2885. (c) Kinderman, S. S.; van
Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T.
Org. Lett. 2001, 3, 2045. (d) Trost, B. M.; Stiles, D. T. Org. Lett. 2005, 7,
2117.
(8) For some examples of cyclic amido-dienes, see: (a) Mart´ınez, R.;
Jime´nez-Va´zquez, H. A.; Delgado, F.; Tamariz, J. Tetrahedron 2003, 59,
481. (b) Wallace, D. J.; Klauber, D. J.; Chen, C. Y.; Volante, R. P. Org.
Chem. 2003, 5, 4749. (c) Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B.
Chem.sEur. J. 2004, 10, 484.
(9) For examples of 1,6-remote asymmetric inductions, see: (a) Paterson,
I.; Dlgado, O.; Florence, G. J.; Lyothier, I.; Scott, J. P.; Sereinig, N. Org.
Lett. 2003, 5, 35. (b) Arai, Y.; Ueda, K.; Xie, J.; Masaki, Y. Synlett 2001,
529. (c) Maezaki, N.; Matsumori, Y.; Shogaki, T.; Soejima, M.; Ohishi,
H.; Tanaka, T.; Iwata, C. Tetrahedron 1998, 54, 13087. (d) Maezaki, N.;
Matsumori, Y.; Shogaki, T.; Soejima, M.; Tanaka, T.; Ohishi, H.; Iwata,
C. Chem. Commun. 1997, 1755. (e) Troyansky, E. I.; Ismagilov, R. F.;
Strelenko, Y. A.; Samoshin, V. V.; Demchuk, D. V.; Nikishin, G. I.;
Lindeman, S. V.; Khrustalyov, V. V.; Struchkov, Y. T. Tetrahedron Lett.
1995, 36, 2293. (f) Stanway, S. J.; Thomas, E. J. Tetrahedron Lett. 1995,
36, 3417. (g) Carey, J. S.; Thomas, E. J. Tetrahedron Lett. 1993, 34, 3935.
(h) Enders, D.; Papadopoulos, K. Tetrahedron Lett. 1983, 24, 4967.
(12) For a review on the synthesis of enamides, see: Tracey, M. R.;
Hsung, R. P.; Antoline, J.; Kurtz, K. C. M.; Shen, L.; Slafer, B. W.; Zhang,
Y. In Science of Synthesis, Houben-Weyl Methods of Molecular Transfor-
mations; Weinreb, S. M., Ed.; Georg Thieme Verlag KG: 2005; Chapter
21.4
.
(13) For allenamide synthesis via amidative cross-coupling, see: (a)
TroShen, L.; Hsung, R. P.; Zhang, Y.; Antoline, J. E.; Zhang, X. Org. Lett.
2005, 7, 3081. (b) See ref 11d. For R-alkylation of allenamides, see: (c)
Xiong, H.; Hsung, R. P.; Wei, L.-L.; Berry, C. R.; Mulder, J. A.; Stockwell,
B. Org. Lett. 2000, 2, 2869
(14) See Supporting Information.
.
Org. Lett., Vol. 12, No. 24, 2010
5769