Communication
ChemComm
source, using an environmentally benign hypervalent iodine
oxidant. The presented protocol is compatible with differently
functionalized unactivated internal alkenes as well as terminal
alkenes. A possible reaction mechanism involving p-allyl and
metal–nitrene intermediates has been proposed and supported
by mechanistic studies.
The authors thank the DST-SERB (CRG/2018/000606), India,
for the support of this research. P. S. thanks the IITM for the
fellowship. The authors would like to dedicate the manuscript
to Prof. Christian Bruneau for his outstanding contribution to
organometallic chemistry and catalysis.
Scheme 7 Mechanistic investigation.
Conflicts of interest
of iminoiodinane in the reaction medium (Scheme 7b).
Furthermore, the reaction of p-allyl rhodium complex 7 with
iminoiodinane 2a0 resulted in the formation of the amination
There are no conflicts to declare.
product 3ra in 42% yield (Scheme 7c) indicating the involve- Notes and references
ment of the p-allyl intermediate in the reaction.
1 (a) B. Darses, R. Rodrigues, L. Neuville, M. Mazurais and P. Dauban,
A plausible mechanism is proposed to account for the
present allylic amidation reaction, which is shown in
Scheme 8. The reaction of [Cp*RhCl2]2 with AgSbF6 provides
the active cationic complex [Cp*Rh(X)][SbF6] A. The coordina-
tion of the double bond of alkene 1a with a rhodium complex A
gives complex B. The allylic C–H bonds of alkenes of complex B
deprotonate affording s-allyl rhodium complex C. Intermediate
Chem. Commun., 2017, 53, 493; (b) Y. Park, Y. Kim and S. Chang,
Chem. Rev., 2017, 117, 9247; (c) A. Trowbridge, S. M. Walton and
M. J. Gaunt, Chem. Rev., 2020, 120, 2613; (d) S.-Y. Hong, D. Kim and
S. Chang, Nat. Catal., 2021, 4, 79; (e) X. Wang, J. Zhang, D. Chen,
B. Wang, X. Yang, Y. Ma and M. Szostak, Org. Lett., 2019, 21, 7038;
( f ) S. Rej and N. Chatani, Angew. Chem., Int. Ed., 2019, 58, 8304.
2 (a) J. P. Mahy, G. Bedi, P. Battioni and D. Mansuy, Tetrahedron Lett.,
1988, 29, 1927; (b) X.-Q. Yu, J.-S. Huang, X.-G. Zhou and C.-M. Che,
Org. Lett., 2000, 2, 2233; (c) E. Milczek, N. Boudet and S. Blakey,
Angew. Chem., Int. Ed., 2008, 47, 6825; (d) P. Gandeepan and
C.-H. Cheng, Chem. – Asian J., 2015, 10, 824.
3 (a) V. Bagchi, A. Kalra, P. Das, P. Paraskevopoulou, S. Gorla, L. Ai,
Q. Wang, S. Mohapatra, A. Choudhury, Z. Sun, T. R. Cundari and
P. Stavropoulos, ACS Catal., 2018, 8, 9183; (b) B. Darses, R. Rodrigues,
L. Neuville, M. Mazurais and P. Dauban, Chem. Commun., 2017,
53, 493; (c) J. W. W. Chang, T. M. U. Ton and P. W. H. Chan, Chem.
Rec., 2011, 11, 331; (d) M.-Z. Lu, X.-R. Chen, H. Xu, H.-X. Dai and
J.-Q. Yu, Chem. Sci., 2018, 9, 1311; (e) S. Maity, R. Kancherla, U. Dhawa,
E. Hoque, S. Pimparkar and D. Maiti, ACS Catal., 2016, 6, 5493.
4 (a) H. Lebel, K. Huard and S. Lectard, J. Am. Chem. Soc., 2005,
127, 14198; (b) H. Lu, H. Jiang, Y. Hu, L. Wojtas and X. P. Zhang,
Chem. Sci., 2011, 2, 2361.
C
undergoes allylic isomerization giving p-allyl rhodium
complex D. Furthermore, in situ generated iminoiodinane 2a0
undergoes nitrene insertion, which leads to the formation of
Rh(V)–nitrene complex E. Metal nitrene complex E undergoes
reductive elimination which generates complex F. The proto-
nation of the complex F forms amination product 3aa along
with the regeneration of the catalyst for the next cycle.
In conclusion, we have successfully demonstrated allylic
C–H amidation of various alkenes using an Rh(III) catalyst
utilizing in situ generated iminoiodinane as an amidation
5 (a) M. E. Harvey, D. G. Musaev and J. Du Bois, J. Am. Chem. Soc.,
2011, 133, 1720; (b) S. M. Paradine and M. C. White, J. Am. Chem.
Soc., 2012, 134, 2036; (c) N. S. Dolan, R. J. Scamp, T. Yang, J. F. Berry
and J. M. Schomaker, J. Am. Chem. Soc., 2016, 138, 14658;
(d) P. M. Wehn, J. Lee and J. Du Bois, Org. Lett., 2003, 5, 4823;
(e) L. Liu, N. Wang, C. Dai, Y. Han, S. Yang, Z. Huang and Y. Zhao,
Eur. J. Org. Chem., 2019, 7857; ( f ) N. Wang, L. Liu, W. Xu, M. Zhang,
Z. Huang, D. Shi and Y. Zhao, Org. Lett., 2019, 21, 365.
6 (a) T. Bhattacharya, D. B. Werz and D. Maiti, Chem, 2020, 7, 555;
(b) S. Bag, S. K. A. Mondal, R. Jayarajan, U. Dutta, S. Porey, R. B. Sunoj
and D. Maiti, J. Am. Chem. Soc., 2020, 142, 12453; (c) S. Maity, P. Dolui,
R. Kancherlaa and D. Maiti, Chem. Sci., 2017, 8, 5181.
7 (a) J. H. Delcamp and M. C. White, J. Am. Chem. Soc., 2006, 128, 15076;
(b) M. S. Chen and M. C. White, J. Am. Chem. Soc., 2004, 126, 1346.
8 (a) T. Cochet, V. Bellosta, D. Roche, J.-Y. Ortholand, A. Greiner and
J. Cossy, Chem. Commun., 2012, 48, 10745; (b) Y. Shibata, E. Kudo,
H. Sugiyama, H. Uekusa and K. Tanaka, Organometallics, 2016,
35, 1547; (c) R. Manoharan and M. Jeganmohan, Eur. J. Org. Chem.,
2020, 7304; (d) A. M. Kazerouni, Q. A. McKoy and S. B. Blakey,
Chem. Commun., 2020, 56, 13287; (e) J. S. Burman and S. B. Blakey,
Angew. Chem., Int. Ed., 2017, 56, 13666; ( f ) P. Sihag and
M. Jeganmohan, J. Org. Chem., 2019, 84, 13053; (g) J. S. Burman,
R. J. Harris, C. M. B. Farr, J. Bacsa and S. B. Blakey, ACS Catal., 2019,
9, 5474; (h) H. Lei and T. Rovis, J. Am. Chem. Soc., 2019, 141, 2268;
(i) T. Knecht, S. Mondal, J.-H. Ye, M. Das and F. Glorius,
Angew. Chem., Int. Ed., 2019, 58, 7117.
9 T. Dohi, N. Yamaoka and Y. Kita, Tetrahedron, 2010, 66, 5775.
10 T. Kana and T. Fukuyama, Chem. Commun., 2004, 353.
Scheme 8 Proposed mechanism.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 6428–6431 | 6431