D. Rudolf, E. Kaifer, H.-J. Himmel
FULL PAPER
Schultz, X. Wang, Q. Zhao, Inorg. Chem. 2007, 46, 1718–1726.
a) C. Würtele, E. Gaoutchenova, K. Harms, M. C. Holthausen,
J. Sundermeyer, S. Schindler, Angew. Chem. 2006, 118, 3951–
3954; Angew. Chem. Int. Ed. 2006, 45, 3867–3869; b) D. Maiti,
D.-H. Lee, K. Gaoutchenova, C. Würtele, M. C. Hothausen,
A. A. N. Sarjeant, J. Sundermeyer, S. Schindler, K. D. Karlin,
Angew. Chem. 2007, 120, 88–91; Angew. Chem. Int. Ed. 2007,
47, 82–85; c) M. P. Lanci, V. V. Smirnov, C. J. Cramer, E. V.
Gauchenova, J. Sundermeyer, J. P. Roth, J. Am. Chem. Soc.
2007, 129, 14697–14709; d) D. Maiti, D.-H. Lee, K. Gaoutch-
enova, C. Würtele, M. C. Holthausen, A. A. N. Sarjeant, J.
Sundermeyer, S. Schindler, K. D. Karlin, Angew. Chem. 2008,
120, 88–91; Angew. Chem. Int. Ed. 2008, 47, 82–85.
nula. The mixture was stirred for a period of 3.5 h and warmed
gradually to –15 °C during this period. The resulting suspension
was filtered and the product obtained in the form of a white pow-
der. Colourless crystals suitable for X-ray diffraction were obtained
from a 1:1 mixture of Et2O and toluene at –18 °C; yield 184 mg
(0.5 mmol, 51%). C10H20Ga2N6 (363.76): calcd. C 33.0, H 5.5, N
23.1; found C 34.3, H 5.9, N 23.4. 1H NMR (200 MHz, C7D8,
233 K): δ = 5.42 (s, 4 H), 3.58 (t, J = 7.3 Hz, 8 H), 2.16 (t, J =
[4]
7.3 Hz, 8 H) ppm. IR (KBr): ν = 2941 (m), 2855 (m), 1906 (s),
˜
1857 (s), 1627 (s), 700 (vs), 635 (m) cm–1. MS (LIFDI, toluene):
m/z = 362 [{Ga(tbo)H}2]. Crystal data for C10H20Ga2N6: Mr =
363.76, 0.43ϫ0.40ϫ0.40 mm3, monoclinic, space group P21/c, a =
15.6340(11), b = 7.6490(15), c = 23.837(5) Å, β = 108.17(3)°, V =
2708.4(8) Å3, Z = 8, dcalcd. = 1.784 Mgm–3, Mo-Kα radiation
(graphite-monochromated, λ = 0.71073 Å), T = 100 K, θrange 1.37
to 28.50°, reflections measd. 25798, indep. 6807, Rint = 0.0563, final
R indices [IϾ2σ(I)]: R1 = 0.0321, wR2 = 0.0811.
[5]
[6]
S. Herres-Pawlis, Nachr. Chem. 2009, 57, 20–23.
a) S. Pohl, M. Harmjanz, J. Schneider, W. Saak, G. Henkel,
J. Chem. Soc., Dalton Trans. 2000, 3473–3479; b) D. Petrovic,
L. M. R. Hill, P. G. Jones, W. B. Tolman, M. Tamm, Dalton
Trans. 2008, 887–894; c) S.-A. Filimon, C. G. Hrib, S. Randoll,
I. Neda, P. G. Jones, M. Tamm, Z. Anorg. Allg. Chem. 2010,
636, 691–699.
X-ray Crystallographic Study: Suitable crystals were taken directly
out of the mother liquor, immersed in perfluorinated polyether oil,
and fixed on top of a glass capillary. Measurements were made on
a Nonius–Kappa CCD diffractometer with low-temperature unit
using graphite-monochromated Mo-Kα radiation. The temperature
was set to 100 K. The data collected were processed using the stan-
dard Nonius software.[45] All calculations were performed using the
SHELXT-PLUS software package. Structures were solved by direct
methods with the SHELXS-97 program and refined with the
SHELXL-97 program.[46,47] Graphical handling of the structural
data during solution and refinement was performed with
XPMA.[48] Atomic coordinates and anisotropic thermal parameters
of non-hydrogen atoms were refined by full-matrix least-squares
calculations.
[7]
a) C. J. Carmalt, A. C. Newport, S. A. O’Neill, I. P. Parkin,
A. J. P. White, D. J. Williams, Inorg. Chem. 2005, 44, 615–619;
b) D. Rische, H. Parala, E. Gemel, M. Winter, R. A. Fischer,
Chem. Mat. 2006, 18, 6075–6082; c) A. P. Milanov, R. Bhakta,
A. Baunemann, H.-W. Becker, R. Thomas, P. Ehrhart, M. Win-
ter, A. Devi, Inorg. Chem. 2006, 45, 11008–11018; d) J. P. Coyle,
W. H. Monillas, G. P. A. Yap, S. T. Barry, Inorg. Chem. 2008,
47, 683–689; e) J. P. Coyle, W. H. Monillas, G. P. A. Yap, S. T.
Barry, Inorg. Chem. 2008, 47, 683 –689; f) A. Baunemann, D.
Bekermann, T. B. Thiede, H. Parala, M. Winter, C. Gemel,
R. A. Fischer, Dalton Trans. 2008, 28, 3715–3722; g) A. P. Mil-
anov, T. B. Thiede, A. Devi, R. A. Fischer, J. Am. Chem. Soc.
2009, 131, 17062 –17063; h) S. E. Potts, C. J. Carmalt, C. S.
Blackman, F. Abou-Chahine, D. Pugh, H. O. Davies, Organo-
metallics 2009, 28, 1838–1844; i) A. P. Milanov, T. B. Thiede,
A. Devi, R. A. Fischer, J. Am. Chem. Soc. 2009, 131, 17062
–17063; j) A. P. Milanov, T. Toader, H. Parala, D. Barreca,
G. A. Davide, C. Bock, H.-W. Becker, D. K. Ngwashi, R. Cross,
S. Paul, U. Kunze, R. A. Fischer, A. Devi, Chem. Mat. 2009,
21, 5443–5455; k) T. Chen, W. Hunks, P. S. Chen, C. Xu, A. G.
Di Pasquale, A. L. Rheingold, Organometallics 2010, 29, 501–
504; l) A. P. Milanov, K. Xu, A. Laha, E. Bugiel, R. Ranjith,
D. Schwendt, H. J. Osten, H. Parala, R. A. Fischer, A. Devi, J.
Am. Chem. Soc. 2010, 132, 36–37.
CCDC-777676 (for [(iPr)2NC(NCy)2LiOEt2]2), -777677 (for
Ga2I4(µ-O){CyN=C(NHCy)(NiPr2)}2), -777675 (for 2), -734722
(for 3), -777679 (for 4), and -777678 (for 5) contain the supplemen-
tary crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see also the footnote on the first page of
this article): Details of the quantum chemical calculations.
[8]
a) U. Wild, P. Roquette, E. Kaifer, J. Mautz, H. Wadepohl, H.-
J. Himmel, Eur. J. Inorg. Chem. 2008, 1248–1257; b) A. Peters,
U. Wild, O. Hübner, E. Kaifer, J. Mautz, H.-J. Himmel, Chem.
Eur. J. 2008, 14, 7813–7821; c) U. Wild, O. Hübner, A. Ma-
ronna, M. Enders, E. Kaifer, H. Wadepohl, H.-J. Himmel, Eur.
J. Inorg. Chem. 2008, 4440–4447; d) A. Peters, E. Kaifer, H.-J.
Himmel, Eur. J. Org. Chem. 2008, 5907–5914; e) D. Domide,
C. Neuhäuser, E. Kaifer, H. Wadepohl, H.-J. Himmel, Eur. J.
Inorg. Chem. 2009, 2170 –0178; f) A. Peters, C. Trumm, M.
Reinmuth, D. Emeljanenko, E. Kaifer, H.-J. Himmel, Eur. J.
Inorg. Chem. 2009, 3791–3800; g) M. Reinmuth, U. Wild, E.
Kaifer, M. Enders, H. Wadepohl, H.-J. Himmel, Eur. J. Inorg.
Chem. 2009, 4795–4808; h) V. Vitske, C. König, E. Kaifer, O.
Hübner, H.-J. Himmel, Eur. J. Inorg. Chem. 2010, 115–126; i)
P. Roquette, A. Maronna, A. Peters, E. Kaifer, H.-J. Himmel,
Ch. Hauf, V. Herz, E.-W. Scheidt, W. Scherer, Chem. Eur. J.
2010, 16, 1336–1350; j) D. Emeljanenko, A. Peters, N. Wagner,
J. Beck, E. Kaifer, H.-J. Himmel, Eur. J. Inorg. Chem. 2010,
1839–1846; k) C. Trumm, O. Hübner, E. Kaifer, H.-J. Himmel,
Eur. J. Inorg. Chem. 2010, 3102–3108.
Acknowledgments
The authors gratefully acknowledge continuous financial support
by the Deutsche Forschungsgemeinschaft (DFG)
[1] a) F. T. Edelmann, Adv. Organomet. Chem. 2008, 57, 183–352;
b) F. T. Edelmann, Chem. Soc. Rev. 2009, 38, 2253–2268.
[2] a) M. P. Coles, Dalton Trans. 2006, 985–1001; b) M. P. Coles,
Chem. Commun. 2009, 3659–3676; c) M. P. Coles, P. J. Aragón-
Sáez, S. H. Oakley, P. B. Hitchcock, M. G. Davidson, Z. B.
Maksic´, R. Vianello, I. Leito, I. Kaljurand, D. C. Apperley, J.
Am. Chem. Soc. 2009, 131, 16858–16868.
[3] a) F. A. Cotton, J. H. Matonic, C. A. Murillo, J. Am. Chem.
Soc. 1997, 19, 7889 –7890; b) F. A. Cotton, L. M. Daniels,
C. A. Murillo, D. J. Timmons, Chem. Commun. 1997, 1449–
1450; c) F. A. Cotton, N. E. Gruhn, J. Gu, P. Huang, D. L.
Lichtenberger, C. A. Murillo, L. O. Van Dorn, C. C. Wilkin-
son, Science 2002, 298, 1971–1974; d) F. A. Cotton, J. Gu,
C. A. Murillo, D. J. Timmons, J. Am. Chem. Soc. 1998, 120,
13280–13281; e) F. A. Cotton, J. P. Donahue, D. L. Lichten-
berger, C. A. Murillo, D. Villagrán, J. Am. Chem. Soc. 2005,
127, 10808–10809; F. A. Cotton, N. S. Dalal, P. Huang, S. A.
Ibragimov, C. A. Murillo, P. M. B. Piccoli, C. M. Ramsey, A. J.
[9]
a) S. P. Green, C. Jones, A. Stasch, Science 2007, 318, 1754–
1757; b) M. Westerhausen, Angew. Chem. 2008, 120, 2215–
2217; Angew. Chem. Int. Ed. 2008, 47, 2185–2187.
a) C. Jones, P. C. Junk, J. A. Platts, D. Rathmann, A. Stasch,
Dalton Trans. 2005, 2497–2499; b) C. Jones, P. C. Junk, J. A.
Platts, A. Stasch, J. Am. Chem. Soc. 2006, 128, 2206–2207; c)
[10]
4960
www.eurjic.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2010, 4952–4961