C O M M U N I C A T I O N S
Heteroaryls generally require higher catalyst loading and longer
reaction times (entry 14), and the reactions must be performed at
reduced temperatures to eliminate homocoupling of the formed
boronic acid with the starting chloride, which occurs rapidly at
temperatures over 80 °C even at low catalyst loads. Initial
optimization of the heteroaryl borylation reaction was carried out
with 3-chlorothiophene and was not found to be general across
different heteroaromatic systems. Further development of a general
method utilizing heteroaryl chlorides is currently ongoing in our
laboratory.
The method can also be extended to a ‘one-pot’ Suzuki-Miyaura
reaction (Table 3).8 In this simple procedure, two aryl chlorides
can be coupled to one another without the isolation of the
intermediate boronic acid, which is the common practice. The first
aryl chloride is used to synthesize the boronic acid in a manner
similar to the methods described above. Upon the addition of a
second aryl chloride and 3 equiv of aqueous K2CO3 (which appears
to decompose the excess tetrahydroxydiboron), the reaction was
stirred overnight at 80 °C. Following an aqueous workup, the
unsymmetrically coupled compounds were obtained in good to
excellent yield after column chromatography.
in good to excellent yield over two steps with low catalyst loads.
Efforts to extend the method to a more diverse set of aryl bromides
and heteroaryls are currently ongoing.
Acknowledgment. We thank the NIGMS (R01 GM035249) and
NSF GOALI program (CHE-0848460) for their financial support
of this research. S.L.J.T. thanks past and present members of the
Merck Research Laboratories West Point Medicinal Chemistry
Department for their support and Merck & Co., Inc. for funding
this PhD research. Additionally, Dr. Corneliu Stanciu (University
of Pennsylvania) is acknowledged for his many insightful conversa-
tions, and Dr. Rakesh Kohli (University of Pennsylvania) for his
help in obtaining HRMS data.
Supporting Information Available: Experimental details and
spectral data for all compounds synthesized. This material is available
References
(1) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419–2440.
(2) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633–9695.
(3) (a) Cho, J. -Y.; Iverson, C. N.; Smith, M. R., III. J. Am. Chem. Soc. 2000,
122, 12868–12869. (b) Shimada, S.; Batsanov, A. S.; Howard, J. A. K.;
Marder, T. B. Angew. Chem., Int. Ed. 2001, 40, 2168–2171. (c) Tse, M. K.;
Cho, J.-Y.; Smith, M. R., III. Org. Lett. 2001, 3, 2831–2833. (d) Cho, J.-
Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr. Science 2002, 295, 305–
308. (e) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.;
Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390–391. (f) Ishiyama, T.;
Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem., Int. Ed. 2002, 41,
3056–3058. (g) Maleczka, R. E., Jr.; Shi, F.; Holmes, D.; Smith, M. R.,
III. J. Am. Chem. Soc. 2003, 125, 7792–7793. (h) Chotana, G. A.; Rak,
M. A.; Smith, M. R., III. J. Am. Chem. Soc. 2005, 127, 10539–10544. (i)
Paul, S.; Chotana, G. A.; Holmes, D.; Reichle, R. C.; Maleczka, R. A., Jr.;
Smith, M. R., III. J. Am. Chem. Soc. 2006, 128, 15552–15553. (j) Murphy,
J. M.; Tzschucke, C. C.; Hartwig, J. F. Org. Lett. 2007, 9, 757–760.
(4) Suzuki, A.; Brown, H. C. Organic Syntheses Via Boranes; Aldrich Chemical
Company: Milwakee, 2003; Vol. 3.
Table 3. One-Pot Palladium-Catalyzed Cross-Coupling Reactionsa
(5) Li, W.; Nelson, D.; Jensen, M.; Hoerrner, S.; Cai, D.; Larsen, R.; Reider,
P. J. Org. Chem. 2002, 67, 5394–5397.
(6) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508–
7510.
(7) Billingsley, K. L.; Buchwald, S. L. J. Org. Chem. 2008, 73, 5589–5591.
(8) Billingsley, K.; Barder, T.; Buchwald, S. Angew. Chem., Int. Ed. 2007,
46, 5359–5363.
(9) Rosen, B.; Huang, C.; Percec, V. Org. Lett. 2008, 10, 2597–2600.
(10) Moldoveanu, C.; Wilson, D.; Wilson, C.; Leowananwat, P.; Resmerita, A.;
Lui, C.; Rosen, B.; Percec, V. J. Org. Chem. 2010, 75, 5438–5452.
(11) Wilson, D.; Wilson, C.; Moldoveanu, C.; Resmerita, A.; Corcoran, P.;
Hoang, L.; Rosen, B.; Percec, V. J. Am. Chem. Soc. 2010, 132, 1800–
1801.
(12) Moldoveanu, C.; Wilson, D.; Wilson, C.; Corcoran, P.; Rosen, B.; Percec,
V. Org. Lett. 2009, 11, 4974–4977.
(13) (a) Nakamura, H.; Fujiwara, M.; Yamamoto, Y. J. Org. Chem. 1998, 63,
7529–7530. (b) Falck, J. R.; Bondlela, M.; Venkaraman, S. K. J. Org. Chem.
2001, 66, 7148–7150. (c) Yu, S.; Saenz, J.; Srirangam, J. K. J. Org. Chem.
2002, 67, 1699–170. (d) Deng, J.- H.; Liu, K.; Kuntz, K. W.; Snapper,
M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 9032–9034.
(14) (a) Song, Y. L.; Morin, C. Synlett 2001, 266–268. (b) Jung, M. E.; Lazarova,
T. I. J. Org. Chem. 1999, 64, 2976–2977. (c) Ma, D.; Wu, Q. Tetrahedron
Lett. 2001, 42, 5279–5281. (d) Zaidlewicz, M.; Wolan, A. J. Organomet.
Chem. 2002, 657, 129–135.
a General conditions: 2.5 mol % of 2, 5 mol % of X-Phos, 2.5 mol %
of NaOt-Bu, 3 equiv of KOAc, 3 equiv of 1, EtOH (0.1 M), 80 °C, 2 h;
1 equiv of the second aryl or heteroaryl chloride, 3 equiv of 1.8 M
K2CO3, 80 °C, 15 h.
(15) Yang, W.; He, H.; Drueckhammer, D. G. Angew. Chem., Int. Ed. 2001,
40, 1714–1718.
(16) Pennington, T.; Kardiman, C.; Hutton, C. A. Tetrahedron Lett. 2004, 45,
6657–6660.
(17) (a) Malan, C.; Morin, C. J. Org. Chem. 1998, 63, 8019–8020. (b) Diemer,
V.; Chaumeil, H.; Defoin, A.; Carre, C. Tetrahedron 2010, 66, 918–929.
(18) Yuen, A.; Hutton, C. Tetrahedron Lett. 2005, 46, 7899–7903.
(19) Bagutski, V.; Ros, A.; Aggarwal, V. K. Tetrahedron 2009, 65, 9956–9960.
(20) Sebelius, S.; Olsson, V.; Szabo, K. J. Am. Chem. Soc. 2005, 127, 10478–
10479.
(21) Selander, N.; Kipke, A.; Sebelius, S.; Szabo, K. J. Am. Chem. Soc. 2007,
129, 13723–12731.
(22) Selander, N.; Szabo, K. Chem. Commun. 2008, 3420–3422.
(23) Marcuccio, S. U.S. Patent 9912940, 1999.
(24) Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A. J. Am.
Chem. Soc. 2008, 130, 9257–9259.
(25) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130,
6686–6687.
In summary, we have reported the first palladium-catalyzed,
direct synthesis of boronic acids with a wide range of aryl chlorides
utilizing a preformed catalyst (2) and tetrahydroxydiboron (1). All
of the reagents utilized are air stable so that the method does not
require the use of a glovebox or anhydrous solvents. The method
tolerates a wide range of functional groups and allows easy and
direct access to a diverse set of boronic acids, boronate esters, and
trifluoroborates. In this process, the use of expensive pinacol is
avoided, which also alleviates the need to hydrolyze and remove
this unnecessary additive. Additionally, an efficient one-pot cross-
coupling of two aryl or heteroaryl chlorides can be accomplished
JA1089759
9
J. AM. CHEM. SOC. VOL. 132, NO. 50, 2010 17703