pubs.acs.org/joc
significantly improved process economy as well as to more
A Two-Step, One-Pot Enzymatic Synthesis
of 2-Substituted 1,3-Diols
sustainable synthetic routes.3 Biotransformations can offer
great applications in cascade processes.4 Since enzymes
generally function under the same or similar conditions
(aqueous solution, pH ∼7, rt), several biocatalytic reactions
can be carried out in one pot. Thus, sequential reactions are
feasible by using multienzyme systems in order to facilitate
and simplify reaction processes but also to shift an unfavor-
able equilibrium to produce the desired product.5 A number
of examples have been published for the one-pot biocatalytic
synthesis of various compounds, combining the enzymatic
stereoselectivity with the simplicity of the cascade procedure.6
The compatibility of enzymes and chemical catalysts in or-
ganic or aqueous medium can also be very useful for one-pot
organic reactions.7
Dimitris Kalaitzakis and Ioulia Smonou*
Department of Chemistry, University of Crete,
Heraklion 71003, Crete, Greece
Received August 3, 2010
Consecutive reduction reactions can be applied for the
cascade one-pot synthesis of diols starting from the corre-
sponding diketones. More specifically, the 1,3-diols are im-
portant targets for many synthetic methodologies since they
(4) (a) Sheldon, R. A. Multi-Step Enzyme Catalysis; Garcia-Junceda, E.,
Ed.; Wiley-VCH: Weinheim, 2008; pp 109-135. (b) Mayer, S. F.; Kroutil,
W.; Faber, K. Chem. Soc. Rev. 2001, 30, 332.
(5) Wong, C. -H.; Whitesides, G. M. Enzymes in Synthetic Organic
Chemistry; Pergamon, Elsevier Science Ltd.: New York, 1994: pp 25-27
and references cited therein.
(6) For some recent examples of one-pot biocatalytic syntheses, see:
€
S.; Wakarchuk, W. W.; Ellinga, L. Adv. Synth. Catal. 2007, 349, 314. (b) Monti,
D.; Ferrandi, E. E.; Zanellato, I.; Hua, L.; Polentini, F.; Carrea, G.; Riva, S.
Adv. Synth. Catal. 2009, 351, 1303. (c) Wu, Q.; Xu, J.-M.; Xia, L.; Wang, J.-L.;
Lina, X.-F. Adv. Synth. Catal. 2009, 351, 1833. (d) Steinreiber, J.;
(a) Namdjou, D.-J.; Sauerzapfe, B.; Schmiedel, J.; Drager, G.; Bernatchez,
A biocatalytic cascade reaction was designed for the
stereoselective synthesis of optically pure 2-alkyl-1,3-
diols employing two enzymes. The cascade process con-
sists of two consecutive steps: a stereoselective diketone
reduction and a hydroxy ketone reduction. Chiral diols
were formed by the addition of ketoreductases in the same
vessel, in high stereoselectivity and chemical yield, with-
out the isolation of the intermediate β-hydroxy ketones.
€
Schurmann, M.; Wolberg, M.; Assema, F.; Reisinger, C.; Fesko, K.; Mink,
D.; Griengl, H. Angew. Chem., Int. Ed. 2007, 46, 1624. (e) Yu, H.; Yu, H.;
Karpel, R.; Chen, X. Bioorg. Med. Chem. 2004, 12, 6427. (f) Resch, V.;
Fabian, W. M. F.; Kroutil, W. Adv. Synth. Catal. 2010, 352, 993.
(g) Horinouchi, N.; Ogawa, J.; Kawano, T.; Sakai, T.; Saito, K.; Matsumoto,
S.; Sasaki, M.; Mikami, Y.; Shimizu, S. Biotechnol. Lett. 2006, 28, 877.
(h) Koszelewski, D.; Clay, D.; Rozzell, D.; Kroutil, W. Eur. J. Org. Chem.
2009, 2289. (i) Yao, S.-P.; Lu, D.-S.; Wu, Q.; Cai, Y.; Xua, S.-H.; Lin, X.-F.
Chem. Commun. 2004, 2006. (j) Rioz-Martınez, A.; Bisogno, F. R.; Rodrıguez,
~
C.; Gonzalo, G.; Lavandera, I.; Pazmino, D. E. T.; Fraaije, M. W.; Gotor, V.
Org. Biomol. Chem. 2010, 8, 1431. (k) Broadwater, S. J.; Roth, S. L.; Price,
K. E.; Kobaslija, M.; McQuade, D. T. Org. Biomol. Chem. 2005, 3, 2899.
(l) Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465. (m) Schrittwieser,
J. H.; Lavandera, I.; Seisser, B.; Mautner, B.; Kroutil, W. Eur. J. Org. Chem.
2009, 2293. (n) Takahashi, H.; Liu, Y.; Liu, H. J. Am. Chem. Soc. 2006, 128,
1432. (o) Franke, D.; Machajewski, T.; Hsu, C.-C.; Wong, C.-H. J. Org.
Chem. 2003, 68, 6828.
(7) For some recent examples of one-pot chemoenzymatic processes for
various compounds, see: (a) Simons, C.; Hanefeld, U.; Arends, I. W. C. E.;
Maschmeyer, T.; Sheldon, R. A. Adv. Synth. Catal. 2006, 348, 471. (b) Asikainena,
M.; Krausea, N. Adv. Synth. Catal. 2009, 351, 2305. (c) Lourenco, N. M. T.;
Afonso, C. A. M. Angew. Chem., Int. Ed. 2008, 47, 9551. (d) Kamal, A.;
Sandbhor, M.; Shaik, A. A. Bioorg. Med. Chem. Lett. 2004, 14, 4581.
In the past decade, the concepts of green chemistry and
sustainable development have become a strategic focus in
both the chemical industry and the academic community at
large.1 A prominent feature of this drive toward sustain-
ability is the widespread application of chemo- and biocata-
lytic methodologies in the manufacture of chemicals.2 The
key to successful implementation of catalytic methodologies
in fine chemicals manufacture is the integration of catalytic
steps in multistep organic syntheses and downstream proces-
sing. The crucial challenge is to combine several catalytic
steps into a one-pot, multistep catalytic cascade process.
In the one-pot process, several reactions are conducted
sequentially in the same reaction vessel, without the isolation
of intermediates. By avoiding time-, effort-, and solvent-
intensive steps, multistep one-pot syntheses contribute to a
€
(e) Maki-Arvela, P.; Sahin, S.; Kumar, N.; Mikkola, J.-P.; Eranen, K. Catal.
Today 2009, 140, 70. (f) Paizs, C.; Katona, A.; Retey, J. Eur. J. Org. Chem.
€
ꢀ
€
2006, 1113. (g) Krausser, M.; Hummel, W.; Groger, H. Eur. J. Org. Chem.
2007, 5175. (h) Witayakran, S.; Ragauskas, A. J. Green Chem. 2007, 9, 475.
(i) Shen, Z.-L.; Zhou, W.-J.; Liu, Y.-T.; Ji, S.-J.; Loh, T.-P. Green Chem.
2008, 10, 283. (j) Prastaro, A.; Ceci, P.; Chiancone, E.; Boffi, A.; Cirilli, R.;
Colone, M.; Fabrizi, G.; Stringaro, A.; Cacchi, S. Green Chem. 2009, 11,
1929. (k) Simons, C.; Hanefeld, U.; Arends, I. W.C.E.; Maschmeyer, T.;
Sheldon, R. A. Top. Catal. 2006, 40, 35. (l) Worthington, A. S.; Burkart,
M. D. Org. Biomol. Chem. 2006, 4, 44. (m) Purkarthofer, T.; Skranc, W.;
€
(1) Sheldon, R. A. Green Chem. 2007, 9, 1273.
(2) Dunn, P. J.; Wells, A. S.; Williams, M. T. Green Chemistry in the
Pharmaceutical Industry; Wiley-VCH: Weinheim, 2010.
(3) (a) Anastas, P.; Warner, J. C. Green Chemistry: Theory and Practice;
Oxford University Press: Oxford, 1998. (b) Anastas, P.; Heine, L. G.;
Williamson, T. C. Green Chemical Syntheses and Processes; American
Chemical Society: Washington, DC, 2000.
Weber, H.; Griengl, H.; Wubbolts, M.; Scholzb, G.; Pochlauer, P. Tetrahedron
2004, 60, 735. (n) Fryszkowska, A.; Frelekb, J.; Ostaszewski, R. Tetrahedron
2005, 61, 6064. (o) Kamal, A.; Shaik, A. A.; Sandbhor, M.; Malik, S. M.
Tetrahedron: Asymmetry 2004, 15, 3939. (p) Turcu, M. C.; Kiljunen, E.;
Kanerva, L. T. Tetrahedron: Asymmetry 2007, 18, 1682. (q) Sgalla, S.;
Fabrizi, G.; Cirilli, R.; Macone, A.; Bonamore, A.; Boffic, A.; Cacchi, S.
Tetrahedron: Asymmetry 2007, 18, 2791.
8658 J. Org. Chem. 2010, 75, 8658–8661
Published on Web 11/18/2010
DOI: 10.1021/jo101519t
r
2010 American Chemical Society