acid that was first utilized by Olah and Prakash,11 then
Kobayashi,12 in a variety of transformations. The present
work was inspired by Baba and co-workers who demon-
strated that In(III) salts are effective catalysts for the direct
substitution of alcohols with various carbon nucleophiles.13
We have previously shown that phosphorothioic esters 3 are
useful intermediates in transition-metal-free allylic alkyla-
tions10 with Grignard reagents and one-step syntheses of
thioethers.14 Furthermore, compounds 1 and 3 are odorless,
bench-stable compounds that are compatible with column
chromatography. Others have demonstrated that phospho-
rothioate esters can be transformed to the corresponding
alkenes15 or converted to thiols via hydrolysis16 or reduc-
tion.17 Sulfides 4 are valuable because they can be oxidized
to the corresponding sulfones and applied to Julia olefination
reactions.18
Table 1. Scope of Substitution with Phosphorothioic Acid, 1
We selected benzyl alcohol (5a) and diethyl phospho-
rothioic acid (1) as the initial test substrates for optimization.
When 1 and 5a were aged at rt in the presence of 10 mol %
Ga(OTf)3, no reaction was observed. However, increasing
the temperature to 60 °C in dichloroethane generated the
desired product in good yield. A control reaction in which
Ga(OTf)3 was omitted furnished no observable product. The
use of various In(III) catalysts resulted in inferior yields. With
optimized conditions in hand, we surveyed the scope of the
transformation (Table 1). The reaction is tolerant to oxygen,
sulfur, and nitrogen heterocycles (entries 5-6, 9-10). Both
primary and secondary alcohols are compatible if at least
a Isolated yield. b Conducted in dichloroethane at 60 °C. c 1% Ga (OTf)3
used. d Product decomposes upon standing. e Isolated as a 3:1 mixture of
regioisomers:
(6) (a) Haynes, R. K.; Katsifis, A. G.; Vonwiller, S. C.; Hambley, T. W.
J. Am. Chem. Soc. 1988, 110, 5423. (b) Parker, K. A.; Johnson, W. S. J. Am.
Chem. Soc. 1974, 96, 2556. (c) Sneen, R. A.; Kay, P. S. J. Am. Chem. Soc.
1972, 94, 6983.
(7) (a) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos,
A. L. J. Am. Chem. Soc. 2009, 131, 1753. (b) Furth, P. S.; Hwu, J. R.
J. Am. Chem. Soc. 1989, 111, 8842. (c) Firouzabadi, H.; Iranpoor, N.;
Jafarpour, M. Tetrahedron Lett. 2006, 47, 93. (d) Legoupy, S.; Cre´visy,
C.; Guillemin, J.-C.; Gre´e, R.; Toupet, L. Chem.sEur. J. 1998, 4, 11. (e)
Guindon, Y.; Frenette, R.; Fortin, R.; Rokach, J. J. Org. Chem. 1983, 48,
1357.
one of the substituents is aromatic or allylic. This method is
amenable to both electron-donating and -withdrawing sub-
stituents (entries 2-6). Alcohols with all alkyl substituents
participated only if they are tertiary (entry 14). For more
active substrates, heating was not necessary.
(8) Ouertani, M.; Collin, J.; Kagan, H. B. Tetrahedron 1985, 41, 3689.
(9) Inada, Y.; Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem.
Soc. 2002, 124, 15172.
Other than 6a, the alcohols in Table 1 do not undergo the
photochemically promoted substitution described in our
earlier publication.10 In that report, we observed more facile
substitution reactions for substrates in which cleavage of the
carbon-oxygen bond results in highly stabilized carboca-
tionic or radical intermediates. We suspect that the highly
electron-rich nature of the furan ring in 6a is why it is able
to successfully undergo photolytic displacement. When
geraniol (8), a γ,γ-disubstituted allylic alcohol, was subjected
to the UV-promoted substitution, significant decomposition
was observed.
(10) Han, X.; Zhang, Y.; Wu, J. J. Am. Chem. Soc. 2010, 132, 4104.
(11) (a) Olah, G. A.; Farooq, O.; Farnia, S. M. F.; Olah, J. A. J. Am.
Chem. Soc. 1988, 110, 2560. (b) Prakash, G. K. S.; Mathew, T.; Panja, C.;
Alconcel, S.; Vaghoo, H.; Do, C.; Olah, G. A. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 3703. (c) Prakash, G. K. S.; Mathew, T.; Panja, C.; Vaghoo,
H.; Venkataraman, K.; Olah, G. A. Org. Lett. 2007, 9, 179. (d) Yan, P.;
Batamack, P.; Prakash, G. K. S.; Olah, G. A. Catal. Lett. 2005, 103, 165.
(e) Parakash, G. K. S.; Yan, P.; To¨ro¨k, B.; Bucsi, I.; Tanaka, M.; Olah,
G. A. Catal. Lett. 2003, 85, 1.
(12) Kobayashi, S.; Komoto, I.; Matsuo, J.-I. AdV. Synth. Catal. 2001,
343, 71.
(13) (a) Nishimoto, Y.; Onishi, Y.; Yasuda, M.; Baba, A. Angew. Chem.,
Int. Ed. 2009, 48, 9131. (b) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem.,
Int. Ed. 2006, 45, 793. (c) Yasuda, M.; Saito, T.; Ueba, M.; Baba, A. Angew.
Chem., Int. Ed. 2004, 43, 1414.
Interestingly, the use of regioisomeric alcohols (21 vs entry
12, Table 1) furnished identical products (eq 3). We also
demonstrated that phosphorothioate esters can be efficiently
hydrolyzed to the corresponding thiol with KOH in aqueous
THF.
(14) Robertson, F.; Wu, J. Org. Lett. 2010, 12, 2668.
(15) (a) Macia¸giewicz, I.; Dybowski, P.; Skowron˜ska, A. Tetrahedron
2003, 59, 6057. (b) Macia¸giewicz, I.; Dybowski, P.; Skowron˜ska, A.
Tetrahedron Lett. 1999, 40, 3791. (c) Krawczyk, E. Synthesis 2006, 716.
(d) Tanaka, K.; Uneme, H.; Ono, N.; Kaji, A. Chem. Lett. 1979, 1039. (e)
Tanaka, K.; Uneme, H.; Ono, N.; Kaji, A. Synthesis 1979, 890.
(16) (a) Fukuto, T. R.; Stafford, E. M. J. Am. Chem. Soc. 1957, 79,
6083. (b) Michalski, J.; Musierowicz, S. Rokzniki Chem. 1962, 36, 1655.
(17) Fabbri, D. Tetrahedron: Asymmetry 1993, 4, 1591.
(18) (a) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563.
(b) Blakemore, P. R.; Cole, W. J.; Kocien˜ski, P. J.; Morley, A. Synlett 1998,
26.
Org. Lett., Vol. 12, No. 24, 2010
5781