ACS Medicinal Chemistry Letters
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Letter
irreversible kynurenine aminotransferase II inhibitors for schizophre-
nia. ACS Med. Chem. Lett. 2012, 3, 187−192.
(14) Claffey, M. M.; Dounay, A. B.; Gan, X.; Hayward, M. M.; Rong,
S.; Tuttle, J. B.; Verhoest, P. R. Bicyclic and Tricyclic Compounds as
KAT II inhibitors. WO2010146488.
Notes
(15) Pellicciari, R.; Rizzo, R. C.; Costantino, G.; Marinozzi, M.;
Amori, L.; Guidetti, P.; Wu, H.-Q.; Schwarcz, R. Modulators of the
kynurenine pathway of tryptophan metabolism: synthesis and
preliminary biological evaluation of (S)-4-(ethylsulfonyl)-
benzoylalanine, a potent and selective kynurenine aminotransferase
II (KAT II) inhibitor. ChemMedChem 2006, 1, 528−531.
(16) Schwarcz, R.; Kajii, Y.; Ono, S. Preparation of amino-
piperazinylquinolonecarboxylates as kynurenine-amino-transferase in-
hibitors. WO2009064836.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Scot Mente and Ann Aulabaugh for helpful
discussions. Katherine Brighty played a critical role in editing
this manuscript. Zoe Hughes provided key insights into the
analysis and depiction of the microdialysis data.
(17) In the event, when measuring KYNA in dialysates from rat
prefrontal cortex, a 10 mg/kg dose, sc, showed a 50% decrease from
basal levels that returned to baseline approximately 20 h postdose.
(18) Mileni, M.; Johnson, D. S.; Wang, Z.; Everdeen, D. S.; Liimatta,
M.; Pabst, B.; Bhattacharya, K.; Nugent, R. A.; Kamtekar, S.; Cravatt,
B. F.; Ahn, K.; Stevens, R. C. Structure-guided inhibitor design for
human FAAH by interspecies active site conversion. Proc. Natl. Acad.
Sci. U.S.A. 2008, 105, 12820−12824.
REFERENCES
■
(1) Han, Q.; Cai, T.; Tagle, D. A.; Li, J. Structure, expression, and
function of kynurenine aminotransferases in human and rodent brains.
J. Cell. Mol. Life Sci. 2010, 67, 353−368.
(2) Eliot, A. C.; Kirsch, J. F. Pyridoxal phosphate enzymes:
Mechanistic, structural, and evolutionary considerations. Annu. Rev.
Biochem. 2004, 73, 383−415.
(3) Moroni, F.; Cozzi, A.; Sili, M.; Mannaioni, G. Kynurenic acid: A
metabolite with multiple actions and multiple targets in brain and
periphery. J. Neural Transm. 2012, 119, 133−139.
(4) Hilmas, C.; Pereira, E. F.; Alkondon, M.; Rassoulpour, A.;
Schwarcz, R.; Albuquerque, E. X. The brain metabolite kynurenic acid
inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic
receptor expression: Physiopathological implications. J. Neurosci. 2001,
21, 7463.
(5) Parsons, C. G.; Danysz, W.; Quack, G.; Hartmann, S.; Lorenz, B.;
Wollenburg, C.; Baran, L.; Przegalinski, E.; Kostowski, W.; Krzascik,
P.; Chizh, B.; Headley, P. M. Novel systemically-active antagonists of
the glycine site of the NMDA receptorElectrophysiological,
biochemical and behavioural characterization. J. Pharmacol. Exp.
Ther. 1998, 283, 1264−1275.
(6) Erhardt, S.; Blennow, K.; Nordin, C.; Skogh, E.; Lindstrom, L. H.;
Engberg, G. Kynurenic acid levels are elevated in the cerebrospinal
fluid of patients with schizophrenia. Neurosci. Lett. 2001, 313, 96−98.
(7) Nilsson, L. K.; Linderholm, K. R.; Engberg, G.; Paulson, L.;
Blennow, K.; Lindstrom, L. H.; Nordin, C.; Karanti, A.; Persson, P.;
Erhardt, S. Elevated levels of kynurenic acid in the cerebrospinal fluid
of male patients with schizophrenia. Schizophr. Res. 2005, 80, 315−
322.
(19) Copeland, R. A. Evaluation of Enzyme Inhibitors in Drug
Discovery: A Guide for Medicinal Chemists and Pharmacologists; Wiley:
Hoboken, NJ, 2005; pp 1−265.
(20) The coordinates have been deposited in the Protein Data Bank,
with ID 4GE4.
(21) Average B values (in A2) for Arg-20 in each of the structures are
as follows: 1 = no value, too disordered; 2 = 84.90; 3 = 103.35; and 4
= 27.30
(22) The coordinates have been deposited in the Protein Data Bank,
with ID 4GE7.
(23) The coordinates have been deposited in the Protein Data Bank,
with ID 4GE9.
(24) See the Supporting Information for the distance measurement
method and corresponding figure.
(25) Gallivan, J. P.; Dougherty, D. A. Cation-π interactions in
structural biology. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9459−9464.
(26) Crowley, P. B.; Golovin, A. Cation-π interactions in protein-
protein interfaces. Proteins: Struct., Funct., Bioinf. 2005, 59, 231−239.
(27) Compound 1: hKAT I IC50 = 30.4 μM and hKAT III IC50
9.04 μM. Compound 2: hKAT I IC50 = 15.3 μM and hKAT II IC50
=
=
6.4 μM; for comparison purposes, rat KAT II kinact/Ki = 1840 M−1 s−1.
Compund 3: hKAT I IC50 = 2.04 μM and hKAT III IC50 = 1.23 μM.
Compound 4: hKAT I IC50 > 36 μM and hKAT III IC50 = 13.6 μM.
(28) Dosing compound 4 in male rats at 32 mg/kg sc had no
lowering effect on PFC kynurenic acid levels as measured by
microdialysis.
(8) Schwarcz, R.; Rassoulpour, A.; Wu, H.-Q.; Medoff, D.;
Tamminga, C. A.; Roberts, R. C. Increased cortical kynurenate
content in schizophrenia. Biol. Psychiatry 2001, 50, 521.
(9) Olsson, S. K.; Samuelsson, M.; Saetre, P.; Lindstrom, L.; Jonsson,
E. G.; Nordin, C.; Engberg, G.; Erhardt, S.; Landen, M. Elevated levels
of kynurenic acid in the cerebrospinal fluid of patients with bipolar
disorder. J. Psychiatry Neurosci. 2010, 35, 195−199.
(10) Erhardt, S.; Olsson, S. K.; Engberg, G. Pharmacological
manipulaton of kynurenic acid: Potential in the treatment of
psychiatric disorders. CNS Drugs 2009, 23, 91−101.
(11) Potter, M. C.; Elmer, G. I.; Bergeron, R.; Albuquerque, E.;
Guidetti, P.; Wu, Hx-Q.; Schwarcz, R. Reduction of endogenous
kynuirenic acid formation enhances extracellular glutamate, hippo-
campal plasticity, and cognitive behavior. Neuropsychopharmacology
2010, 35, 1734−1742.
(12) Schmidt, W.; Guidetti, P.; Okuno, E.; Schwarcz, R. Character-
ization of human brain kynurenine aminotransferases using [3H]
kynurenine as a substrate. Neuroscience 1993, 55, 177−184.
(13) Dounay, A. B.; Anderson, M.; Bechle, B. M.; Campbell, B. M.;
Claffey, M. M.; Evdokimov, A.; Evrard, E.; Fonseca, K. R.; Gan, X.;
Ghosh, S.; Hayward, M. M.; Horner, W.; Kim, Ji.Y.; McAllister, L. A.;
Pandit, J.; Paradis, V.; Parikh, V. D.; Reese, M. R.; Rong, S.; Salafia, M.
A.; Schuyten, K.; Strick, C. A.; Tuttle, J. B.; Valentine, J.; Wang, H.;
Zawadzke, L. E.; Verhoest, P. R.. Discovery of brain-penetrant,
40
dx.doi.org/10.1021/ml300237v | ACS Med. Chem. Lett. 2013, 4, 37−40