an excellent entry point into the synthesis of complex
alkaloids, have remained elusive until now.
Our hypothesis was that DHPD triflates derived from
ꢀ-amino esters (e.g., 1a, Scheme 1) would undergo nucleo-
Our laboratory has been investigating fragmentation7
reactions that deliver functionalized alkynes by means of
nucleophilic addition to vinylogous acyl triflates (VATs, eq
1).8 Note that most organic fragmentation processes produce
alkenes;7c “alkynogenic” fragmentations require a better
nucleofuge9 (typically triflate or molecular nitrogen; cf. eqs
1 and 2) than is needed to generate alkenyl carbonyls. Our
ongoing methodology is reminiscent of the classic Eschen-
moser-Tanabe alkynyl ketone synthesis (eq 2),10 but VAT
fragmentations deliver a wider array of products including
alkynyl ketones, alcohols, and ꢀ-keto phosphonates.11
Scheme 1. Synthesis of Dihydropyridone (DHPD) Triflate 1a
phile-triggered fragmentation to homopropargyl amine de-
rivatives. However, lactam carbonyls are less electrophilic
than lactones or ketones, and reaction conditions that had
proven optimal in our earlier studies8,11,12 were not applicable
in this new system.
Table 1 comprises illustrative data from a large body of
exploratory experiments aimed at establishing the appropriate
Table 1. Selected Experiments from the Optimization of
Nucleophile-Triggered Fragmentation of Dihydropyridone
(DHPD) Triflates (1)
Related methods deliver homopropargyl alcohols,12 allenyl
ketones,13 and alkynyl aldehydes.14 Homopropargyl amines,
(5) We found two examples of ethynylation of ꢀ-amino aldehydes (using
the Seyferth-Gilbert/Ohira-Bestmann and Corey-Fuchs homologation
protocols, respectively). The reagents involved are fundamentally one-carbon
synthons for making terminal alkynes; see: (a) Carballo, R. M.; Ram´ırez,
M. A.; Rodr´ıguez, M. L.; Mart´ın, V. S.; Padro´n, J. I. Org. Lett. 2006, 8,
3837–3840. (b) Kazuta, Y.; Tsujita, R.; Uchino, S.; Kamiyama, N.;
Mochizuki, D.; Yamashita, K.; Ohmori, Y.; Yamashita, A.; Yamamoto,
T.; Kohsaka, S.; Matsuda, A.; Shuto, S. J. Chem. Soc., Perkin Trans. 1
2002, 1199–1212.
entry
RN
Ph
R4-M
solvent
yield (%)
1
2
3
4
5
6
Ph-Lia
THF
56
Ph-Lia
toluene
toluene
THF
toluene
THF
toluene
toluene
toluene
toluene
toluene
toluene
toluene
toluene
76
(6) EnantioselectiVe Synthesis of b-Amino Acids, 2nd ed.; Juaristi, E.,
Soloshonok, V. A., Eds.; Wiley-VCH: New York, 2005.
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Bn
Octyl
Ph-MgBra
BnNH-Li
BnNH-Li
Me-Lic
sb
(7) Fragmentation reactions as defined by Grob: (a) Grob, C. A.; Schiess,
P. W. Angew. Chem., Int. Ed. Engl. 1967, 6, 1–15. Seminal paper: (b)
Eschenmoser, A.; Frey, A. HelV. Chim. Acta 1952, 35, 1660–1666. Recent
review: (c) Prantz, K.; Mulzer, J. Chem. ReV. 2010, 110, 3741–3766.
Leading references: (d) Ku¨rti, L.; Czako´, B. Grob Fragmentation. In
Strategic Applications of Named Reactions in Organic Synthesis; Elsevier:
New York, 2003; pp 190-191 and references cited. (e) Ku¨rti, L.; Czako´,
B. Wharton Fragmentation. In Strategic Applications of Named Reactions
in Organic Synthesis; Elsevier: New York, 2003; pp 480-481 and references
cited.
0
0
sb
7
Me-Lic
90 (2)
48 (3)
sb
8d
9
Me-Lic
Me-MgCle
n-Bu-Lif
t-Bu-Lig
t-Bu-Lig
n-Bu-Lif
n-Bu-Lif
10
11
12
13
14
97 (2)
38 (2)
64 (2)
46 (2)
54 (2)
(8) (a) Kamijo, S.; Dudley, G. B. J. Am. Chem. Soc. 2005, 127, 5028–
5029. (b) Kamijo, S.; Dudley, G. B. J. Am. Chem. Soc. 2006, 128, 6499–
6507.
(9) (a) Lepore, S. D.; Mondal, D. Tetrahedron 2007, 63, 5103–5122.
(b) Creary, X.; Burtch, E. A. J. Org. Chem. 2004, 69, 1227–1234. (c) Su,
T. M.; Sliwinski, W. F.; Schleyer, P. v. R. J. Am. Chem. Soc. 1969, 91,
5386–5388. (d) Streitwieser, A., Jr.; Wilkins, C. L.; Kiehlmann, E. J. Am.
Chem. Soc. 1968, 90, 1598–1601.
a 1.0 M in butyl ether. b Trace quantities of 2 and/or 3 observed in the
crude reaction mixture by H NMR spectroscopy. c 1.0 M in ether. d 2.0
1
equiv of MeLi, -78 to +80 °C. e 3.0 M in ether. f 2.4 M in hexanes. g 0.7
M in pentane.
(10) Seminal papers: (a) Eschenmoser, A.; Felix, D.; Ohloff, G. HelV.
Chim. Acta 1967, 50, 708–713. (b) Tanabe, M.; Crowe, D. F.; Dehn, R. L.
Tetrahedron Lett. 1967, 3943–3946. Leading references: (c) Ku¨rti, L.;
Czako´, B. Eschenmoser-Tanabe Fragmentation. In Strategic Applications
of Named Reactions in Organic Synthesis; Elsevier: New York, 2003; pp
158-159 and references cited.
combination of nitrogen substituent, external nucleophile,
solvent, and reaction temperature profile to provide control
(11) (a) Kamijo, S.; Dudley, G. B. Org. Lett. 2006, 8, 175–177. (b)
Jones, D. M.; Kamijo, S.; Dudley, G. B. Synlett 2006, 936–938. (c) Kamijo,
S.; Dudley, G. B. Tetrahedron Lett. 2006, 47, 5629–5632. (d) Jones, D. M.;
Dudley, G. B. Synlett 2010, 223–226. (e) Jones, D. M.; Lisboa, M. P.;
Kamijo, S.; Dudley, G. B. J. Org. Chem. 2010, 75, 3260–3267. (f) Jones,
D. M.; Dudley, G. B. Tetrahedron 2010, 60, 4860–4866.
(13) Kolakowski, R. V.; Manpadi, M.; Zhang, Y.; Emge, T. J.; Williams,
L. J. J. Am. Chem. Soc. 2009, 131, 12910–12911.
(14) (a) Draghici, C.; Brewer, M. J. Am. Chem. Soc. 2008, 130, 3766–
3767. (b) Draghici, C.; Huang, Q.; Brewer, M. J. Org. Chem. 2009, 74,
8410–8413. (c) Bayir, A.; Draghici, C.; Brewer, M. J. Org. Chem. 2010,
75, 296–302.
(12) Tummatorn, J.; Dudley, G. B. J. Am. Chem. Soc. 2008, 130, 5050–
5051.
Org. Lett., Vol. 13, No. 1, 2011
159