M. Barbero et al. / Tetrahedron Letters 51 (2010) 6356–6359
6359
19. 6,7-Dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline
procedure for the preparation of
Benzenedisulfonimide (1; 10 mol %; 110 mg, 0.5 mmol) was added to
(5a):
representative
In conclusion, we have proposed a mild, easy, efficient, and
green method for the synthesis of tetrahydroisoquinoline and tet-
rahydro-b-carboline through the Pictet–Spengler reaction in the
presence of o-benzenedisulfonimide (1) used as a reusable homo-
geneous catalyst. The advantages of performing the Pictet–Spen-
tetraydroisoquinolines
5:
o-
a
mixture of 2-(3,4-dimethoxyphenyl)ethanamine (2a; 0.91 g, 5 mmol) and
benzaldehyde (3a; 0.53 g, 5 mmol). The mixture was stirred and heated at
80 °C. The reaction was monitored by GC and GC/MS. First, the complete
disappearance of 2a and 3a, then the formation of intermediate 4a and product
5a were observed (30 min), and finally the total interconversion of 4a to 5a
(6 h). Cold water (20 ml) was added to the reaction mixture, which was cooled
to 0–5 °C, under vigorous stirring. The resulting solid was filtered on a Buchner
funnel and washed with additional cold water (5 ml). It was virtually pure (GC,
GC–MS, 1H NMR, 13C NMR) title compound 5a, white solid; yield: 89% (1.61 g).
The aqueous washings were collected and evaporated under reduced pressure.
After removal of the water, virtually pure (1H NMR) o-benzenedisulfonimide
(1) was recovered (92 mg, 84% yield). The same procedure was employed in the
preparation of tetrahydro-b-carbolines 8.
gler reaction in the presence of
1 as a catalyst can be
summarized as follows: (1) the use of a safe, non-volatile, non-cor-
rosive Brønsted acid, (2) good recovery yields of 1 at the end of the
reactions by simply evaporating aqueous washings, (3) the target
products are obtained generally in excellent yields (4) the reactions
are carried out under easy, mild, and green conditions with eco-
nomic and ecological benefits.
20. Coskun, N.; Tuncman, S. Tetrahedron 2006, 62, 1345–1350.
21. Minor, D. L.; Wyrick, S. D.; Charifson, P. S.; Watts, V. J.; Nichols, D. E.; Mailman,
R. B. J. Med. Chem. 1994, 37, 4317–4328.
Acknowledgment
22. Burger, B. V.; Viviers, M. Z.; Bekker, J. P. I.; le Roux, M.; Fish, N.; Fourie, W. B.;
Weibchen, G. J. Chem. Ecol. 2008, 34, 659–671.
23. Horiguchi, Y.; Kodama, H.; Nakamura, M.; Yoshimura, T.; Hanezi, K.; Hamada,
H.; Saitoh, T.; Sano, T. Chem. Pharm. Bull. 2002, 50, 253–257.
24. Aubry, S.; Pellet-Rostang, S.; Faure, R.; Lemaire, M. J. Heterocycl. Chem. 2006, 1,
139–143.
This work was supported by the University of Torino.
References and notes
1. (a) Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030–2036; (b) Cox, E.
D.; Cook, J. M. Chem. Rev. 1995, 95, 1797–1842; (c) Chrzanowska, M.;
Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341–3370; (d) Lorenz, M.; Van
Linn, M. L.; Cook, J. M. Curr. Org. Synth. 2010, 7, 189–223; (e) Bentley, K. W. Nat.
Prod. Rep. 2006, 23, 444–463; (f) Vinu, A.; Kalita, P.; Samie, L.; Chari, M. A.; Pal,
R.; Subba Reddy, B. V. Tetrahedron Lett. 2010, 51, 702–706. and references cited
therein; (g) Cheng, P.; Huang, N.; Jiang, Z.-H.; Zhang, Q.; Zheng, Y.-T.; Chen, J.-J.;
Zhang, X.-M.; Ma, Y.-B. Bioorg. Med. Chem. Lett. 2008, 18, 2475–2478. and
references cited therein; (h) Chen, K.-X.; Xie, H.-Y.; Li, Z.-G.; Gao, J.-R. Bioorg.
Med. Chem. Lett. 2008, 18, 5381–5386; (i) Tang, J.-G.; Liu, H.; Zhou, Z.-Y.; Liu, J.-
K. Synth. Commun. 2010, 40, 1411–1417. and references cited therein.
2. Wang, Y. F.; Song, Z. B.; Chen, C. X.; Peng, J. S. Sci. China Chem. 2010, 53, 562–
568.
3. Saha, B.; Sharma, S.; Sawant, D.; Kundu, B. Tetrahedron Lett. 2007, 48, 1379–
1383.
4. Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887–890.
5. Saha, B.; Sharma, S.; Sawant, B.; Kundu, B. Tetrahedron 2008, 64, 8676–
8684.
6. Saito, A.; Numaguchi, J.; Hanzawa, Y. Tetrahedron Lett. 2007, 48, 835–839.
7. Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086–1087.
8. Vanden Eynden, M. J.; Stambuli, J. P. Org. Lett. 2008, 10, 5289–5291.
9. Manabe, K.; Nobutou, D.; Kobayashi, S. Bioorg. Med. Chem. 2005, 13, 5154–5158.
10. Joun, S. W. J. Org. Chem. 2006, 71, 2521–2523.
11. Barbero, M.; Cadamuro, S.; Dughera, S.; Venturello, P. Synlett 2007, 2209–2212.
12. Barbero, M.; Cadamuro, S.; Dughera, S.; Venturello, P. Synthesis 2008, 1379–
1388.
25. Evanno, L.; Ormala, J.; Pihko, P. M. Chem. Eur. J. 2009, 15, 12963–12967.
26. Zhang, Z.; Schafer, L. L. Org. Lett. 2003, 5, 4733–4736.
27. Shigehisa, H.; Honda, T. Heterocycles 2008, 75, 1233–1239.
28. 1-Cyclohexyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (5m) is known in
the literature29 but no physical and spectral data are reported. 1H NMR
(200 MHz, CDCl3): d = 6.64 (s, 1H), 6.55 (s, 1H), 3.95 (d, J = 7.0 Hz, 1H) 3.69 (s,
3H), 3.68 (s, 3H), 3.25–3.18 (m,2H), 2.71–2.64 (m, 2H), 2.10–1.86 (m, 2H),
1.60–1.46 (m, 5H), 1.10–0.97 (m, 5H); 13C NMR (50 MHz, CDCl3): d = 148.8,
147.4, 131.1, 127.8, 111.6, 109.5, 56.5, 56.1, 55.9, 43.4, 37.0, 32.1, 29.8, 26.1,
25.6.
29. Gitto, R.; Agnello, S.; Ferro, S.; De Luca, L.; Vullo, D.; Brynda, J.; Mader, P.;
Supuran, C. T.; Chimirri, A. J. Med. Chem. 2010, 53, 2401–2408.
30. 1-(t-Butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (5n) is known in the
literature31 but no NMR data are reported. 1H NMR (200 MHz, CDCl3): 6.61 (s,
1H), 6.57 (s, 1H), 3. 99 (s, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 3.28–3.20 (m, 2H),
2.69–2.60 (m, 2H), 1.99 (br s, 1H), 0.86 (s, 9H); 13C NMR (50 MHz, CDCl3):
d = 147.5, 146.1, 131.9, 128.9, 112.4, 110.2, 56.4, 56.1, 55.7, 42.3, 25.0.
31. Knabe, J.; Roloff, H. Arch. Pharm. Ber. Dtsch. Pharm. Ges. 1965, 298, 561–565.
32. 1-(2-Methoxyphenyl)-1,2,3,4-tetrahydro-b-carboline (8b) is known in the
literature33 but no physical and spectral data are reported. 1H NMR
(200 MHz, CDCl3): d = 8.00 (br s, 1H), 7.92 (dd, J1 = 7.6 Hz, J2 = 1.7 Hz, 2H),
7.61 (d, J = 7.6 Hz, 1H), 7.32–6.82 (m, 5H), 5.39 (s, 1H), 3.77 (s, 3H), 3.29–3.21
(m, 2H), 2.71–2.62 (m, 2H), 2.12 (br s, 1H); 13C NMR (50 MHz, CDCl3): d = 148.5,
147.3, 136.1, 131.6, 128.4, 127.4, 127.2, 124.6, 121.9, 121.6, 120.6, 118.9, 118.8,
114.0, 56.5, 55.3, 41.3, 22.4.
33. Protiva, M.; Vejdezlek, Z. J.; Rajsner, M. Collect. Czech. Chem. Commun. 1963, 28,
629–636.
13. Barbero, M.; Cadamuro, S.; Dughera, S.; Venturello, P. Synthesis 2008, 3625–
3632.
14. Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S. Eur. J. Org. Chem. 2009, 430–
436.
15. Barbero, M.; Cadamuro, S.; Deagostino, A.; Dughera, S.; Larini, P.; Occhiato, G.;
Prandi, C.; Tabasso, S.; Venturello, P.; Vulcano, R. Synthesis 2009, 2260–2266.
16. Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S.; Ghigo, G. Eur. J. Org. Chem.
2009, 4346–4351.
17. Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S.; Piccinini, C. Synthesis 2010,
315–319.
34. Prajapati, D.; Gohain, M. Synth. Commun. 2008, 38, 4426–4433.
35. 1-(4-Cyanophenyl)-1,2,3,4-tetrahydro-b-carboline (8e) is known in the
literature36 but no physical and spectral data are reported. 1H NMR
(200 MHz, CDCl3): d = 7.93 (br s, 1H), 7.72–7.57 (m, 5H), 7.32–7.28 (m, 1H),
7.20–7.01 (m, 2H), 3.27–3.18 (m, 2H), 2.75–2.64 (m, 2H), 1.99 (br s, 1H); 13C
NMR (50 MHz, CDCl3): d = 148.6, 140.3, 136.5, 132.6, 132.4, 128.6, 127.6, 122.3,
122.2, 119.5, 119.1, 118.6, 113.9, 56.9, 41.7, 22.2.
36. Horvath, D. J. Med. Chem. 1997, 40, 2412–2423.
37. Foye, W. O.; Wang, H.-F. Med. Chem. Res. 1997, 7, 180–191.
38. Kawate, T.; Nakagawa, M.; Yamazaki, H.; Hirayama, M.; Hino, T. Chem. Pharm.
Bull. 1993, 41, 287–291.
18. Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S. Tetrahedron Lett. 2010, 51,
2342–2344.