´
6184
A. Adamczyk-Wozniak et al. / Tetrahedron Letters 51 (2010) 6181–6185
Table 2
Acknowledgments
Assignments of the signals in 13C NMR spectra
Carbon atom R = Ph (Ref. 12)a R = NR1R2 (this work)
This work has been supported by the European Union in the
framework of the European Social Fund through the Warsaw
University of Technology Development Programme and by
scholarships awarded by the Center of Advanced Studies for And-
1a
3
3a
4
5
6
Not detected
83.61
HO
1
B
O2
93–98
158.48
123.22
131.87
128.21
131.24
153–157
121–126
128–132
1a
3a
´
rzej Sporzynski at the University of Twente and for Agnieszka
3
7
6
R
Adamczyk-Woz´niak.
4
7
Supplementary data
5
a
In CDCl3, 125.1 MHz.
Supplementary data associated with this article can be found, in
S(1)
References and notes
C(9)
C(8)
1. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine; Hall,
D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2005.
2. Severin, K. Dalton Trans. 2009, 5254.
C(10)
C(11)
3. (a) Baker, S. J.; Hui, X.; Maibach, H. I. Ann. Rep. Med. Chem. 2005, 40, 323; (b)
Hui, X.; Baker, S. J.; Wester, R. C.; Barbadillo, S.; Cashmore, A. K.; Sanders, V.;
Hold, K. M.; Akama, T.; Zhang, Y.-K.; Plattner, J. J.; Maibach, H. I. J. Pharm. Sci.
2007, 96, 2622; (c) Baker, S. J.; Zhang, Y.-K.; Akama, T.; Lau, A.; Zhou, H.;
Hernandez, V.; Mao, W.; Alley, M. R. K.; Sanders, V.; Plattner, J. J. J. Med. Chem.
2006, 49, 4447; (d) Rock, F. L.; Mao, W.; Yaremchuk, A.; Tukalo, M.; Crepin, T.;
Zhou, H.; Zhang, Y.-K.; Hernandez, V.; Akama, T.; Baker, S. J.; Plattner, J. J.;
Shapiro, L.; Martinis, S. A.; Benkovic, S. J.; Cusack, S.; Alley, M. R. K. Science 2007,
316, 1759; (e) Alley, M. R. K.; Baker, S. J.; Beutner, K. R.; Plattner, J. Expert Opin.
Invest. Drugs 2007, 16, 157.
N(1)
C(6)
C(4)
C(3)
C(5)
C(7)
O(1)i
O(2)
B(1)i
B(1)
C(2)
C(1)
O(2)i
4. Sanders, V.; Maples, K. R.; Plattner, J. J.; Bellinger-Kawahara, C. PCT Int. Appl.
WO2007146965; Chem. Abstr. 2007, 148, 61302.
O(1)
5. (a) Anacor Pharm., CA, USA . Expert Rev. Clin. Immunol. 2008, 4, 309; (b) Akama,
T.; Baker, S. J.; Zhang, Y.-K.; Hernandez, V.; Zhou, H.; Sanders, V.; Freund, Y.;
Kimura, R.; Maples, K. R.; Plattner, J. J. Bioorg. Med. Chem. 2009, 19, 2129.
6. Freund, Y. R.; Plattner, J.; Ding, C.; Zhang, Y. K.; Liu, L.; Wu, A.; Bu, W.; Easom, E.;
Gut, J.; Rosenthal, P. J. The American Society of Tropical Medicine and Hygiene
7. (a) Dowlut, M.; Hall, D. G. J. Am. Chem. Soc. 2006, 128, 4226; (b) Bérubé, M.;
Dowlut, M.; Hall, D. G. J. Org. Chem. 2008, 73, 6471.
8. Gunasekera, D. S.; Gerold, D. J.; Aalderks, N. S.; Chandra, J. S.; Maanu, C. A.;
Kiprof, P.; Zhdankin, V. V.; Reddy, M. V. R. Tetrahedron 2007, 63, 9401.
_
9. Adamczyk-Woz´niak, A.; Cyran´ ski, M. K.; Zubrowska, A.; Sporzyn´ ski, A. J.
Organomet. Chem. 2009, 694, 3533.
10. Kumar, J. S.; Jonnalagadda, S. C.; Mereddy, V. R. Tetrahedron Lett. 2010, 51,
779.
11. Kumar, J. S.; Bashian, C. M.; Corsello, M. A.; Jonnalagadda, S. C.; Mereddy, V. R.
Figure 1. The hydrogen bonded dimeric structure of 1,3-dihydro-1-hydroxy-3-(4-
thiomorpholinyl)-2,1-benzoxaborole (1b). Thermal ellipsoids are drawn with 50%
probability. The intermolecular O–Hꢀ ꢀ ꢀO hydrogen bonds are depicted with dashes.
Tetrahedron Lett. 2010, 51, 4482.
12. Adamczyk-Woz´niak, A.; Cyran´ ski, M. K.; Jakubczyk, M.; Klimentowska, P.; Koll,
_
_
A.; Kołodziejczak, J.; Pojmaj, G.; Zubrowska, A.; Zukowska, G. Z.; Sporzyn´ ski, A.
J. Phys. Chem. A 2010, 114, 2324.
13. Jezierska, A.; Panek, J. J.; Zukowska, G. Z.; Sporzyn´ ski, A. J. Phys. Org. Chem.
360.0(2)°) and the O(1)–H(1) group is in plane with the fused ring
system. In contrast to morpholine derivative 1a, where the hydro-
gen-bonded dimer is described as involving interacting parallel
planes of benzoxaborole units shifted by ca. 0.5 Å,9,14 in the case
of 1b, the H-bonded dimer is flat with the largest deviation from
planarity around 0.05 Å. This decreases significantly the hydrogen
bond length to 2.728(2) Å for the Oꢀ ꢀ ꢀO separation from that ob-
served for 1a [2.797(2) Å]. The comparison between the relevant
bonds around the boron atom shows that in the case of 1b all
the bonds are significantly shorter than in 1a. Similar to 1a, the thi-
omorpholine ring in 1b adopts a chair conformation and is almost
perpendicular to the plane of the central dimeric ring. The ob-
served discrepancies in the geometry of a molecule of 1b compared
to that of 1a indicate that the borole fragment is extremely sensi-
tive to modifications introduced by substituents.9 This example
shows that both steric and electronic factors are important but a
weak interaction should not be precluded.
In conclusion, on the basis of NMR results, we have described
the diverse reactivity of 2-formylphenylboronic acid with second-
ary amines as a function of their basicity and structure. Substituted
benzoxaboroles are the main products of the reactions with amines
of moderate basicity, while with strong Lewis bases complexes of
boroxin are formed. With aromatic amines, the formation of
C-alkylated products is the dominant reaction.
_
2010, 23, 451.
14. Sporzyn
´ ski, A.; Lewandowski, M.; Rogowska, P.; Cyran´ ski, M. K. Appl.
Organometal. Chem. 2005, 19, 1202.
_
´
´
15. Sporzynski, A.; Zubrowska, A.; Adamczyk-Wozniak, A. Synthesis of Boronic
Acids—Molecular Receptors for Sugars. In Synthetic Receptors in Molecular
Recognition; Rybachenko, V. I., Ed.; Schidnyj Wydawnyczyj Dim: Donetsk,
Ukraine, 2007; pp 51–87.
16. James, T. D.; Phillips, M. D.; Shinkai, S. In Boronic Acids in Saccharide Recognition;
RSC Publishing: Cambridge, UK, 2006.
17. Hutin, M.; Bernardinelli, G.; Nitschke, J. R. Chem. Eur. J. 2008, 14, 4585.
18. Galbraith, E.; Kelly, A. M.; Fossey, J. S.; Kociok-Köhn, G.; Davidson, M. G.; Bull, S.
D.; James, T. D. New J. Chem. 2009, 33, 181.
19. (a) Perrin, D. D. In Dissociation Constants of Organic Bases in Aqueous Solutions;
Butterworths: London, 1965; (b) Williams, R. pKa Data Compiled, http://
20. (a) Suni, V.; Kurup, M. R. P.; Nethaji, M. J. Mol. Struct. 2005, 749, 177; (b)
Velazquez, M.; Salgado-Zamora, H.; Perez, C.; Campos-A, M. E.; Mendoza, P.;
Jimenez, H.; Jimenez, R. J. Mol. Struct. 2010, 979, 56.
21. (a) Typical procedure for the synthesis of aminobenzoxaboroles 1: Na2SO4 (5.5 g)
was added to a solution of 2-formylphenylboronic acid (1.0 g, 6.7 mmol) and
morpholine (0.58 g, 6.7 mmol) in Et2O (50 mL). The reaction mixture was
stirred for 24 h at room temperature. After this time, the Na2SO4 was removed
by filtration and another portion of Na2SO4 (5.5 g, 40 mmol) was added to the
resulting clear solution. The reaction mixture was stirred for an additional
24 h. After this time the Na2SO4 was removed by filtration and the organic
filtrate was slowly evaporated to dryness. The resulting yellowish crystalline
solid was ground and was washed with hexane (2 mL) to wash out the
remaining morpholine. The hexane was decanted and the solid was dried to
give the desired product 1a as a cream powder (1.32 g, 89%); (b) Typical