6308
S. H. Kim et al. / Tetrahedron Letters 51 (2010) 6305–6309
δ = 8.04 (d)
NC
Ph
CN
CN
H
H
CN
Ph
Ph
C(sp3)-H activation
nOe
H
(III)
δ = 8.61 (s)
O
O
Me
δ = 3.65 (s)
nOe
COOMe
(VI)
COOMe
(VII)
COOMe
8
4a
Scheme 4.
Basavaiah, D.; Reddy, K. R.; Kumaragurubaran, N. Nat. Protoc. 2007, 2, 2665–
2676; (c) Das, B.; Banerjee, J.; Ravindranath, N. Tetrahedron 2004, 60, 8357–
8361.
via a Pd-catalyzed cascade reaction in reasonable yields. Further
studies on the reaction progress and mechanistic details are
underway.11
7. For the introduction of nucleophiles at the secondary position of Baylis–
Hillman adducts using DABCO salt concept, see: (a) Chung, Y. M.; Gong, J. H.;
Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023–9026; (b) Lee, K. Y.;
Gowrisankar, S.; Lee, Y. J.; Kim, J. N. Tetrahedron 2006, 62, 8798–8804. and
further references cited therein.
Acknowledgment
8. Typical procedure for the synthesis of 4a: A stirred mixture of 3a (185 mg,
0.5 mmol), Pd(OAc)2 (12 mg, 10 mol%), TBAB (162 mg, 0.5 mmol), and K2CO3
(139 mg, 1.0 mmol) in toluene (1.0 mL) was heated to reflux for 3 h. After the
usual aqueous workup and column chromatographic purification process
(hexanes/EtOAc, 20:1), compounds 4a (106 mg, 74%) and 6a3a (4 mg, 3%) were
obtained. Other compounds were prepared similarly, and the selected
spectroscopic data of 4a, 4b, 4d, 4f, 6c, and 7a are as follows.
This research was supported by the Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(2010-0015675). Spectroscopic data were obtained from the Korea
Basic Science Institute, Gwangju branch.
Compound 4a: 74% yield; white solid, mp 167–169 °C; IR (KBr) 2223, 1731,
1299, 1212 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 3.65 (s, 3H), 7.39–7.56 (m, 5H),
;
References and notes
7.70 (t, J = 8.1 Hz, 1H), 7.82 (t, J = 8.4 Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H), 8.34 (d,
J = 8.4 Hz, 1H), 8.61 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 52.41, 111.77, 116.38,
125.60, 128.24 (2C), 128.66, 128.73, 129.39, 129.45, 130.87, 131.16, 133.64,
135.14, 137.76, 145.25, 167.07; ESIMS m/z 288 (M++1). Anal. Calcd for
1. For the leading reviews on Baylis–Hillman reaction, see: (a) Basavaiah, D.; Rao,
A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (b) Gowrisankar, S.; Lee,
H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769–8780; (c) Kim,
J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627–645; (d) Lee, K. Y.; Gowrisankar, S.;
Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481–1490; (e) Radha Krishna, P.;
Sachwani, R.; Reddy, P. S. Synlett 2008, 2897–2912; (f) Declerck, V.; Martinez, J.;
Lamaty, F. Chem. Rev. 2009, 109, 1–48; (g) Singh, V.; Batra, S. Tetrahedron 2008,
64, 4511–4574.
C
19H13NO2: C, 79.43; H, 4.56; N, 4.88. Found: C, 79.66; H, 4.78; N, 4.65.
Compound 4b: 77% yield; white solid, mp 79–81 °C; IR (KBr) 2222, 1720, 1239,
1209 cmꢀ1 1H NMR (CDCl3, 300 MHz)
0.97 (t, J = 7.2 Hz, 3H), 4.10 (q,
;
d
J = 7.2 Hz, 2H), 7.40–7.51 (m, 5H), 7.71 (t, J = 8.1 Hz, 1H), 7.82 (t, J = 8.4 Hz, 1H),
8.04 (d, J = 8.1 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 8.60 (s, 1H); 13C NMR (CDCl3,
75 MHz) d 13.57, 61.53, 111.66, 116.45, 125.60, 128.20, 128.23, 128.60, 128.84,
129.39, 130.03, 130.78, 131.21, 133.59, 135.04, 138.00, 145.15, 166.93; ESIMS
m/z 302 (M++1). Anal. Calcd for C20H15NO2: C, 79.72; H, 5.02; N, 4.65. Found: C,
79.81; H, 5.31; N, 4.56.
2. For the recent Pd-catalyzed reactions of modified Baylis–Hillman adducts, see:
(a) Vasudevan, A.; Tseng, P.-S.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8591–
8593; (b) Coelho, F.; Veronese, D.; Pavam, C. H.; de Paula, V. I.; Buffon, R.
Tetrahedron 2006, 62, 4563–4572; (c) Kohn, L. K.; Pavam, C. H.; Veronese, D.;
Coelho, F.; De Carvalho, J. E.; Almeida, W. P. Eur. J. Med. Chem. 2006, 41, 738–
744; (d) Liu, H.; Yu, J.; Wang, L.; Tong, X. Tetrahedron Lett. 2008, 49, 6924–6928;
(e) Szlosek-Pinaud, M.; Diaz, P.; Martinez, J.; Lamaty, F. Tetrahedron 2007, 63,
3340–3349; (f) Declerck, V.; Ribiere, P.; Nedellec, Y.; Allouchi, H.; Martinez, J.;
Lamaty, F. Eur. J. Org. Chem. 2007, 201–208; (g) Ribiere, P.; Declerck, V.;
Nedellec, Y.; Yadav-Bhatnagar, N.; Martinez, J.; Lamaty, F. Tetrahedron 2006, 62,
10456–10466; (h) Sauvagnat, B.; Lamaty, F.; Lazaro, R.; Martinez, J. Tetrahedron
2001, 57, 9711–9718; (i) Jellerichs, B. G.; Kong, J.-R.; Krische, M. J. J. Am. Chem.
Soc. 2003, 125, 7758–7759. Further references were compiled in Ref. 1b.
3. For our recent contributions on Pd-catalyzed reactions of modified Baylis-
Hillman adducts, see: (a) Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, S. H.; Kim, J. N.
Chem. Eur. J. 2010, 16, 2375–2380; (b) Kim, S. H.; Lee, H. S.; Kim, K. H.; Kim, J. N.
Tetrahedron Lett. 2010, 51, 4267–4271; (c) Kim, J. M.; Kim, S. H.; Lee, H. S.; Kim,
J. N. Tetrahedron Lett. 2009, 50, 1734–1737; (d) Kim, K. H.; Kim, E. S.; Kim, J. N.
Tetrahedron Lett. 2009, 50, 5322–5325; (e) Kim, J. M.; Kim, K. H.; Kim, T. H.;
Kim, J. N. Tetrahedron Lett. 2008, 49, 3248–3251; (f) Lee, H. S.; Kim, S. H.;
Gowrisankar, S.; Kim, J. N. Tetrahedron 2008, 64, 7183–7190; (g) Gowrisankar,
S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6241–6244; (h)
Gowrisankar, S.; Lee, H. S.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2008, 49,
1670–1673.
Compound 4d: 65% yield; white solid, mp 191–193 °C; IR (KBr) 2220, 1709,
1465, 1246 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 3.63 (s, 3H), 6.18 (s, 2H), 7.26 (s,
;
1H), 7.35–7.51 (m, 5H), 7.61 (s, 1H), 8.41 (s, 1H); 13C NMR (CDCl3, 75 MHz) d
52.28, 102.19, 102.29, 104.91, 110.76, 116.80, 127.52, 128.15, 128.47, 128.69,
128.77, 132.46, 133.74, 138.02, 143.68, 149.41, 152.05, 167.12; ESIMS m/z 332
(M++1). Anal. Calcd for C20H13NO4: C, 72.50; H, 3.95; N, 4.23. Found: C, 72.86;
H, 4.09; N, 4.18.
Compound 4f: 57% yield; white solid, mp 208–210 °C; IR (KBr) 2228,
1492 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 7.56–7.65 (m, 5H), 7.77 (t, J = 8.1 Hz,
;
1H), 7.91 (t, J = 8.4 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 8.38 (d, J = 8.4 Hz, 1H), 8.54
(s, 1H); 13C NMR (CDCl3, 75 MHz) d 111.08, 111.63, 115.67, 116.96, 125.94,
128.92, 128.99, 129.04, 129.52, 130.14, 130.96, 132.10, 133.91, 134.87, 139.30,
146.10; ESIMS m/z 255 (M++1). Anal. Calcd for C18H10N2: C, 85.02; H, 3.96; N,
11.02. Found: C, 84.87; H, 4.13; N, 10.89.
Compound 6c: 5% yield; colorless oil; IR (film) 1732, 1719, 1235 cmꢀ1 1H NMR
;
(CDCl3, 300 MHz) d 2.27 (s, 3H), 3.45 (d, J = 17.4 Hz, 1H), 3.71 (s, 3H), 3.99 (d,
J = 17.4 Hz, 1H), 4.59 (s, 1H), 6.95 (s, 1H), 7.03 (d, J = 7.8 Hz, 1H), 7.40–7.46 (m,
2H), 7.61–7.72 (m, 3H); 13C NMR (CDCl3, 75 MHz) d 21.23, 42.56, 52.93, 59.63,
62.71, 124.40, 124.42, 125.40, 125.48, 128.30, 129.15, 134.84, 135.09, 135.45,
138.26, 140.63, 155.24, 173.84, 203.38; ESIMS m/z 293 (M++1). Anal. Calcd for
C
19H16O3: C, 78.06; H, 5.52. Found: C, 78.19; H, 5.76.
Compound 7a: Major isomer (36% yield): pale yellow oil; IR (film) 2239,
1454 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 4.19 (d, J = 7.5 Hz, 1H), 4.40 (dt, J = 7.5
4. For the examples on the control of the carbopalladation regiochemistry, see: (a)
Bombrun, A.; Sageot, O. Tetrahedron Lett. 1997, 38, 1057–1060; (b) Kim, G.;
Kim, J. H.; Kim, W. j.; Kim, Y. A. Tetrahedron Lett. 2003, 44, 8207–8209; (c)
Roesch, K. R.; Larock, R. C. J. Org. Chem. 2001, 66, 412–420; (d) Dankwardt, J. W.;
Flippin, L. A. J. Org. Chem. 1995, 60, 2312–2313; (e) Rigby, J. H.; Hughes, R. C.;
Heeg, M. J. J. Am. Chem. Soc. 1995, 117, 7834–7835; (f) Ferraccioli, R.; Carenzi,
D.; Catellani, M. Synlett 2002, 1860–1864.
;
and 2.4 Hz, 1H), 4.85 (d, J = 2.4 Hz, 1H), 5.66 (d, J = 2.4 Hz, 1H), 7.28–7.60 (m,
9H); 13C NMR (CDCl3, 75 MHz) d 42.65, 55.98, 107.36, 120.10, 121.32, 124.77,
127.81, 128.37, 128.97, 129.27, 129.86, 137.38, 139.71, 140.09, 149.65; ESIMS
m/z 232 (M++1). Minor isomer (10% yield): pale yellow oil; IR (film) 2242,
1454 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 4.47 (dt, J = 9.0 and 1.8 Hz, 1H), 4.62 (d,
;
5. For the synthesis of poly-substituted naphthalenes, see: (a) Asao, N.; Takahashi,
K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650–
12651; (b) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003,
125, 10921–10925; (c) Barluenga, J.; Vazquez-Villa, H.; Ballesteros, A.;
Gonzalez, J. M. Org. Lett. 2003, 5, 4121–4123; (d) Barluenga, J.; Vazquez-Villa,
H.; Merino, I.; Ballesteros, A.; Gonzalez, J. M. Chem. Eur. J. 2006, 12, 5790–5805;
(e) Shi, M.; Lu, J.-M. J. Org. Chem. 2006, 71, 1920–1923; (f) Balamurugan, R.;
Gudla, V. Org. Lett. 2009, 11, 3116–3119; (g) Kim, S. H.; Kim, Y. M.; Lee, H. S.;
Kim, J. N. Tetrahedron Lett. 2010, 51, 1592–1595; (h) Gowrisankar, S.; Lee, H. S.;
Kim, J. N. Tetrahedron Lett. 2007, 48, 3105–3108. Further references were cited
in Ref. 3b.
J = 9.0 Hz, 1H), 5.04 (d, J = 1.8 Hz, 1H), 5.71 (d, J = 1.8 Hz, 1H), 7.21–7.63 (m,
9H); ESIMS m/z 232 (M++1).
During the evaluation process one of the reviewers suggested that we carry out
the reaction of 3a under the PEG-catalyzed conditions. The reaction of 3a in
DMF (90 °C, 30 min) under the influence of Pd(OAc)2/PEG-3400/K2CO3 showed
a similar result in entry 2 in Table 1 (65% of 4a and 5% of 6a).
9. For the similar oxidative decyanation of secondary nitriles to ketones, see: (a)
Kulp, S. S.; McGee, M. J. J. Org. Chem. 1983, 48, 4097–4098; (b) Freerksen, R. W.;
Selikson, S. J.; Wroble, R. R. J. Org. Chem. 1983, 48, 4087–4096.
10. For the similar examples on d-carbon elimination, see: (a) Kim, H. S.; Lee, H. S.;
Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 3154–3157; (b) Kim, H. S.;
Gowrisankar, S.; Kim, E. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6569–6572; (c)
Kim, H. S.; Gowrisankar, S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49,
3858–3861.
6. For the synthesis of cinnamyl bromides in a stereoselective manner from
Baylis–Hillman adducts, see: (a) Gowrisankar, S.; Kim, S. H.; Kim, J. N. Bull.
Korean Chem. Soc. 2009, 30, 726–728. and further references cited therein; (b)