ORGANIC
LETTERS
2003
Vol. 5, No. 17
3085-3088
Tweaking Copper Hydride (CuH) for
Synthetic Gain. A Practical, One-Pot
Conversion of Dialkyl Ketones to
Reduced Trialkylsilyl Ether Derivatives
Bruce H. Lipshutz,* Christopher C. Caires, Peter Kuipers, and Will Chrisman
Department of Chemistry and Biochemistry, UniVersity of California,
Santa Barbara, California 93106
Received June 24, 2003
ABSTRACT
Variations in the reagents and stoichiometries used to generate CuH in situ, as well as the nature of the ligands present, have led to a very
efficient and inexpensive method for effecting hydrosilylations of dialkyl ketones.
Hexameric CuH‚Ph3P1 was introduced by Stryker in 1988
as an excellent reagent for effecting conjugate reductions of
R,â-unsaturated carbonyl compounds.2 Its potential to reduce
both aldehydes and ketones in a 1,2-sense, however, has only
recently become of synthetic value.3 Molecular hydrogen,3a,b
Bu3SnH,3c and various silanes3d,e can serve as stoichiometric
sources of hydride, thereby allowing CuH to be used
catalytically. The latter set of conditions (i.e., CuH‚Ligand/
silane) results in a net carbonyl hydrosilylation, which can
be performed asymmetrically4 in the presence of a nonra-
cemic ligand (e.g., Roche’s 3,5-xyl-MeO-BIPHEP5 or Takasa-
go’s DTBM-SEGPHOS6) in the presence of excess
PMHS at low temperatures.7 Aryl silanes (e.g., PhMe2SiH,
Ph2MeSiH), in addition to PMHS, readily participate in this
process.8 Unfortunately, both Et3SiH (TES-H) and t-BuMe2-
SiH (TBS-H) lead, at best, to traces of the desired alcohol-
derived silyl ethers, even in the case of aldehydes.3e Recently,
Grubb’s catalyst has been shown to activate silanes leading
to hydrosilylations of ketones, although reactions with TES-H
or TBS-H require heating.9
Because TBS is among the most valued of alcohol pro-
tecting groups,10 we have endeavored to elucidate the ex-
perimental parameters that play a role in determining the
extent of participation by a given silane. In this Letter we
describe several new insights regarding the in situ generation
of ligated “CuH”11 and document that by control of stoichi-
(1) Churchill, M. R.; Bezman, S. A.; Osborn, J. A.; Wormald, J. Inorg.
Chem. 1972, 11, 1818. Churchill, M. R.; Bezman, S. A.; Osborn, J. A.;
Wormald, J. J. Am. Chem. Soc. 1971, 93, 2063.
(2) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem.
Soc. 1988, 110, 291. See also: Goeden, G. V.; Caulton, K. G. J. Am. Chem.
Soc. 1981, 103, 7354.
(3) (a) Chen, J.-X.; Daeuble, J. F.; Brestensky, D. M.; Stryker, J. M.
Tetrahedron 2000, 56, 2153. (b) Chen, J.-X.; Daeuble, J. F.; Stryker, J. M.
Tetrahedron 2000, 56, 2789. (c) Lipshutz, B. H.; Ung, C. S.; Sengupta, S.
Synlett 1989, 64. (d) Brunner, H.; Miehling, W. J. Organomet. Chem. 1984,
275, C17. (e) Lipshutz, B. H.; Chrisman, W.; Noson, K. J. Organomet.
Chem. 2001, 624, 367.
(5) (a) Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher,
J.; Lalonde, M.; Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure
Appl. Chem. 1996, 68, 131. (b) Schmid, R.; Foricher, J.; Cereghetti, M.;
Schonholzer, P. HelV. Chim. Acta 1991, 74, 370.
(6) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura,
T.; Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264.
(7) Lipshutz, B. H.; Noson, K.; Chrisman, W. J. Am. Chem. Soc. 2001,
123, 12917.
(8) Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem.
Soc. 2003, 125, 8779.
(9) Maifeld, S. V.; Miller, R. L.; Daesung, L. Tetrahedron Lett. 2002,
43, 6263.
(4) Nishiyama, H.; Itoh, K. Asymmetric Hydrosilylation and Related
Reactions. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH:
New York, 2000; Chapter 2.
(10) (a) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis, 2nd ed.; Wiley: New York, 1991. (b) Kocienski, P. J. Protecting
Groups; Thieme: Stuttgart, 1994.
10.1021/ol035164+ CCC: $25.00 © 2003 American Chemical Society
Published on Web 08/02/2003