6636 Organometallics 2010, 29, 6636–6638
DOI: 10.1021/om101005w
Metalated-Arene-Phosphino Ligands: A Novel Approach to Open-Sided
Gold Compounds
ꢀ
ꢁ
M. Rosa Axet, Marion Barbazanges, Mylene Auge, Christophe Desmarets, Jamal Moussa,
Cyril Ollivier, Corinne Aubert,* Louis Fensterbank,* Vincent Gandon,‡ Max Malacria,
Lise Marie Chamoreau, and Hani Amouri*
ꢁ ꢁ
UPMC Universite Paris 06, Institut Parisien de Chimie Moleculaire (UMR CNRS 7201), 4 Place Jussieu, C. 42,
75252 Paris Cedex 05, France. ‡Univ Paris-Sud, UMR CNRS 8182, Orsay 91405, France
Received October 22, 2010
Summary: Anoveltypeofmetalatedphosphino ligands, [Cp*Ru-
(η6-arene-PPh2)][OTf] (2a-d-OTf), has been prepared in which
the -PPh2 unit is attached to a metalated π-arene platform. This
unique class of ligands 2a-d are converted to open-sided cationic
gold complexes 3a-d upon treatment with [AuCl(tht)]. The
structure of one of these compounds, [Cp*Ru(η6-C6H5-PPh2-
Au-Cl)][OTf] (3a-OTf), was ascertained by single-crystal X-ray
diffraction. Preliminary studies suggest that cationic complex 3a is
active in metal-catalyzed cycloisomerization reactions.
the steric properties of the donor ligand bound to the metal
center, “LfAu” (L = PR3, carbenes, cyclic aminocarbene,
etc.).3,4 More recently Echavarren and co-workers designed
a novel family of gold complexes with bulky phosphine
ligands.5 The latter showed enhanced catalytic activity com-
pared to the market available [AuCl(PPh3)] complex.
Pursuing our research in this area, we wish to report in this
communication the design and synthesis of a novel family of
gold complexes of the type LMfAu-Cl where LM is an
organometallic phosphine ligand. In this ligand, the -PPh2
moiety is now attached to a metalated π-arene platform (see
Scheme 1). In this model complex, we sought to change the
electronic and steric properties around the gold center in the
hopes that this may lead to novel reactive species. To the best
of our knowledge, this is the first example of such a com-
pound to be reported in the literature.
Our group has developed the synthesis of some neutral
metalated π-quinones. The related reactive intermediates
thioquinones and selenoquinones were also stabilized and
isolated for the first time as π-complexes of “Cp*M” (M =
Rh, Ir).6 These π-quinonoid species were successfully used as
organometallo ligands to prepare a variety of coordination
assemblies and polymers with luminescent properties.7 In
this work we describe the synthesis of a new type of organo-
metallo ligand where the phosphine moiety is attached to an
arene complex of Cp*Ru. However we note that metalated
phosphino ligands such as rigid phosphino-ferrocenes has
been widely and successfully used in homogeneous catalysis
by many groups.8
Gold complexes have received much attention due to their
importance in several applications such as luminescence,
supramolecular chemistry, and nanoparticles, and more
recently in catalysis.1 Indeed in the past decade, homoge-
neous gold catalysis has emerged as a powerful tool for novel
organic transformations, thus providing a variety of C-C
bond-forming reactions for the synthesis of complex chemi-
cal structures.2 In this context, efforts have been devoted to
prepare new gold complexes by tuning the electronic and/or
*Corresponding authors. (H.A.) Fax: (33)1-44-27-38-41. E-mail:
hani.amouri@upmc.fr. (C.A.) Fax: (33)1-44-27-73-60. E-mail:
corinne.aubert@upmc.fr. (L.F.) Fax: (33)1-44-27-73-60. E-mail: louis.
(1) (a) Gold Chemistry: Applications and Future Directions in the Life
Sciences; Mohr, F., Ed.; Wiley-VCH: Weinheim, 2009. (b) Modern Supra-
molecular Gold Chemistry: Gold-Metal Interactions and Applications;
Laguna, A., Ed.; Wiley-VCH: Weinheim, 2008. (c) Yu, S.-Y.; Sun, Q.-F.; Lee,
T. K.-M.; Cheng, E. C.-C.; Li, Y.-Z.; Yam, V. W. W. Angew. Chem., Int. Ed.
2008, 47, 4551. (d) De Quadras, L.; Shelton, A. H.; Kuhn, H.; Hampel, F.;
Schanze, K. S.; Gladysz, J. A. Organometallics 2008, 27, 4979. (e) Liau, R.-Y.;
Schier, A.; Schmidbaur, H. Organometallics 2003, 22, 3199. (f) Stefanescu,
D. M.; Yuen, H. F.; Glueck, D. S.; Golen, J. A.; Zakharov, L. N.; Incarvito, C. D.;
Rheingold, A. L. Inorg. Chem. 2003, 42, 8891. (g) Landgraf, G. In Gold.
Progress in Chemistry, Biochemistry and Technology; Schmidbaur, H., Ed.;
John Wiley and Sons: Chichester, U.K., 1999; pp 143-171. (h) Puddephatt, R. J.
Coord. Chem. Rev. 2001, 216-217, 313.
(5) (a) Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am.
Chem. Soc. 2005, 127, 6178. (b) Perez-Galan, P.; Delpont, N.; Herrero-
Gomez, E.; Maseras, F.; Echavarren, A. M. Chem.;Eur. J. 2010, 16, 5324.
(6) (a) Le Bras, J.; Amouri, H.; Vaissermann, J. Organometallics
1998, 17, 1116. (b) Moussa, J.; Guyard-Duhayon, C.; Herson, P.; Amouri, H.;
Rager, M. N.; Jutand, A. Organometallics 2004, 23, 6231. (c) Moussa, J.;
Lev, D. A.; Boubekeur, K.; Rager, M. N.; Amouri, H. Angew. Chem., Int.
Ed. 2006, 45, 3854. (d) Moussa, J.; Rager, M. N.; Boubekeur, K.; Amouri, H.
Eur. J. Inorg. Chem. 2007, 2648. (e) Amouri, H.; Moussa, J.; Renfrew,
A. K.; Dyson, P. J.; Rager, M. N.; Chamoreau, L.-M. Angew. Chem., Int. Ed.
2010, 49, 7530.
(2) For reviews, see: (a) Shapiro, N. D.; Toste, F. D. Synlett 2010, 5,
ꢁ
~
675. (b) F€urstner, A. Chem. Soc. Rev. 2009, 38, 3208. (c) Jimenez-Nunez, E.;
Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (d) Hashmi, A. S. K. Chem.
Rev. 2007, 107, 3180. For recent contributions from our laboratory, see: (e)
Harrak, Y.; Simonneau, A.; Malacria, M.; Gandon, V.; Fensterbank, L. Chem.
ꢀ
Commun. 2010, 46, 865. (f) Lemiere, G.; Gandon, V.; Cariou, K.; Hours, A.;
Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem.
ꢀ
Soc. 2009, 131, 2993. (g) Benedetti, E.; Lemiere, G.; Chapellet, L.-L.;
Penoni, A.; Palmisano, G.; Malacria, M.; Goddard, J.-P.; Fensterbank, L.
(7) (a) Moussa, J.; Wong, K. M.-C.; Chamoreau, L.-M.; Amouri, H.;
Yam, V. W.-W. Dalton Trans. 2007, 3526. (b) Moussa, J.; Guyard-
Duhayon, C.; Boubekeur, K.; Amouri, H.; Yip, S. K.; Yam, V. W. W. Cryst.
Growth Des. 2007, 7, 962. (c) Moussa, J.; Amouri, H. Angew. Chem., Int.
Ed. 2008, 47, 1372. (d) Moussa, J.; Rager, M. N.; Chamoreau, L.-M.; Ricard,
L.; Amouri, H. Organometallics 2009, 28, 397. (e) Damas, A.; Moussa, J.;
Rager, M. N.; Amouri, H. Chirality 2010, 22, 889.
Org. Lett. 2010, 12, 4396.
ꢁ
(3) (a) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009,
109, 3612. (b) Ricard, L.; Gagosz, F. Organometallics 2007, 26, 4704.
ꢁ
(4) (a) Bartolome, C.; Carrasco-Rolando, M.; Coco, S.; Cordovilla,
C.; Espinet, P.; Martin-Alvarez, J. M. Dalton Trans. 2007, 5339. (b)
ꢁ
Bartolome, C.; Carrasco-Rando, M.; Coco, S.; Cordovilla, C.; Martín-
Alvarez, J. M.; Espinet, P. Inorg. Chem. 2008, 47, 1616. (c) Lavallo, V.;
Frey, G. D.; Kousar, S.; Donnadieu, B.; Bertrand, G. Proc. Natl. Acad. Sci.
U. S. A. 2007, 104, 13569. (d) Zeng, X.; Soleilhavoup, M.; Bertrand, G. Org.
Lett. 2009, 11, 3166.
(8) (a) Ferrocenes: Homogeneous Catalysis/Organic Synthesis/Mate-
rials Science; Togni, A., Hayashi, T., Eds.; Wiley-VCH: Weinheim, 1995. (b)
Arrayas, R. G.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45,
7674, and references therein.
r
pubs.acs.org/Organometallics
Published on Web 11/24/2010
2010 American Chemical Society