J. Liu et al. / Tetrahedron Letters 51 (2010) 6349–6352
6351
O
Table 3
Domino reactions of arylaldehydes with 1-acetylcyclopropanecarboxamides leading
NaOH
to spiropiperidine 2,4-diones 6a
3a
ð1Þ
EtOH
r.t.
Ph
O
HN
Ph
7a
O
O
O
NaOH, EtOH
r.t.
Ar
+
ArCHO
NHAr'
21 %
O
N
Ar
In conclusion, a concise and efficient synthesis of fully function-
Ar'
alized piperidine-2,4-diones 3 and 6 has been developed based on
the one-pot domino reaction of arylaldehydes and 1-acetylcyclo-
propanecarboxamides. The overall transformation involves tan-
dem aldol/intramolecular aza-Michael/(aldol)/Michael sequences.
This protocol is associated with readily available starting materials,
mild conditions, dense and flexible substitution patterns, and
potential synthetic utility of the final products.
1
2
6
Entry
1
Ar
2
Ar0
6 (Yield %)b,c
1
2
3
4
1a
1a
1e
1e
C6H5
C6H5
2b
2c
2c
2e
4-MeOC6H4
4-MeC6H4
4-MeC6H4
4-ClC6H4
6a (41)
6b (35)
6c (38)
6d (44)
4-MeC6H4
4-MeC6H4
a
Reactions were carried out on a 1.0-mmol scale in 5 mL of EtOH with
(3.0 equiv), 2 (1.0 equiv), and NaOH (2.0 equiv).
Yield of isolated product.
1
b
c
Acknowledgments
The formation of compounds 3 was observed on TLC.
Financial support by NSFC (20972027), and Training Fund of
NENU’S Scientific Innovation Project (NENU-STC08013 and
STB07007), is greatly acknowledged.
bonds were created. Indeed, spiro compounds 3 and 6 could be
synthesized, respectively, with different mole ratio of reactants.
The richness of the functionality on the piperidine-2,4-diones of
types 3 and 6 may render them extremely versatile as synthons
in further synthetic transformations.18
Based on all the results mentioned above, a possible mechanism
for the highly efficient one-pot transformation into spiropiperi-
dine-2,4-diones 3 was proposed, as depicted in Scheme 3. A tan-
dem aldol condensation and intramolecular aza-Michael addition
of arylaldehyde and b-ketoamides take place first, giving the key
enolate intermediate II (7 ? I ? II).19 Then, the spiropiperidine-
2,4-diones 3 would be produced via a second aldol condensation
of II with 1 giving piperidine-2,4-diones 6 with an exocyclic dou-
ble-bond and a second Michael addition between 6 and 2 (Path
A).20
There is an alternative pathway to form spiro compounds 3,
that is, an intermolecular Michael addition between II and 7
(Path B), which can not be completely ruled out. In order to further
elucidate the possible mechanism, the condensation product 7a
was subjected to the reactions under otherwise identical condi-
tions (Eq. 1). Consequently, compound 3a was obtained in ꢀ21%
yield. The observation supports the possibility of Path B, in which
a tandem aldol/aza-Michael/Michael sequence was involved start-
ing from the substrates 1 and 2.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Schreiber, S. L. Science 2000, 287, 1964.
2. (a) Trost, B. M. Science 1991, 254, 1471; (b) Trost, B. M. Angew. Chem., Int. Ed.
Engl. 1995, 34, 258; (c) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
3. Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45,
7134.
4. For reviews, see: (a) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem., Int.
Ed. 2007, 46, 1570; (b) MacMillan, D. W. C.; Walji, A. M. Synlett 2007, 1477.
5. For reviews on domino reactions: (a) Tiete, L. F. Chem. Rev. 1996, 96, 115; (b)
Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137; (c) Malacria, M. Chem.
Rev. 1996, 96, 289; (d) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996,
96, 195; (e) Neuschütz, K.; Velker, J.; Neier, R. Synthesis 1998, 227; (f) Poli, G.;
Giambastiani, G.; Heumann, A. Tetrahedron 2000, 56, 5959; (g) McCarroll, A. J.;
Walton, J. C. Angew. Chem., Int. Ed. 2001, 40, 2224; (h) Tietze, L. F.; Beifuss, U.
Angew. Chem., Int. Ed. Engl. 1993, 32, 131; (i) Bunce, A. Tetrahedron 1995, 51,
13103; (j) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003,
551; (k) de Meijere, A.; von Zezschwitz, P.; Bräse, S. Acc. Chem. Res. 2005, 38,
413.
6. (a) Cheng, X.; Liang, F.; Shi, F.; Zhang, L.; Liu, Q. Org. Lett. 2009, 11, 93; (b) Liang,
F.; Cheng, X.; Liu, J.; Liu, Q. Chem. Commun. 2009, 3636; (c) Liang, F.; Zhang, J.;
Tan, J.; Liu, Q. Adv. Synth. Catal. 2006, 348, 1986; (d) Liang, F.; Li, D.; Zhang, L.;
Gao, J.; Liu, Q. Org. Lett. 2007, 9, 4845; (e) Li, Y.; Liang, F.; Bi, X.; Liu, Q. J. Org.
Chem. 2006, 71, 8006.
7. Li, Y.; Xu, X.; Tan, J.; Liao, P.; Zhang, J.; Liu, Q. Org. Lett. 2010, 12, 244.
8. For selected representative reactions from b-ketoamides, see: (a) Jiang, B.; Tu,
S.-J.; Kaur, P.; Wever, W.; Li, G. J. Am. Chem. Soc. 2009, 131, 11660; (b) Liéby-
Muller, F.; Constantieux, T.; Rodriguez, J. J. Am. Chem. Soc. 2005, 127, 17176; (c)
Zhou, C.-Y.; Che, C.-M. J. Am. Chem. Soc. 2007, 129, 5828; (d) Lu, B.; Ma, D. Org.
Lett. 2006, 8, 6115; (e) Xiang, D.; Wang, K.; Liang, Y.; Zhou, G.; Dong, D. Org. Lett.
2008, 10, 345; (f) Ramanjulu, J. M.; DeMartino, M. P.; Lan, Y.; Marquis, R. Org.
Lett. 2010, 12, 2270.
O
O
O
O
NaOH
aldol
NaOH
+
NHR
ArCHO
Ar HN
O
Ar
N
R
I
O
R
7
1
2
9. For pharmacuetical application of piperidine-2,4-diones, see: (a) 3,3-diethyl-5-
methyl-piperidine-2,4-dione (methyprylon) is used for insomnia and daytime
tension, which is categorized under the following by the FDA: Sedatives and
Hypnotics; ATC code: N05CE02; (b) N-arylpiperidine-2,4-dione derivatives
may be used as abnormal cannabidiols agents for lowering intraocular
pressure, Eur. Pat. Appl. EP 2 123 264 A1.
10. For examples of piperidine-2,4-diones as intermediates in organic synthesis,
see: (a) Asahia, K.; Nishinob, H. Tetrahedron 2005, 61, 11107; (b) Asahia, K.;
Nishinob, H. Tetrahedron Lett. 2006, 47, 7259.
11. For recent examples towards piperidine-4-dione and piperidine-2,4-dione
synthesis, see: (a) Cui, L.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394; (b)
Palillero, A.; Teran, J. L.; Gnecco, D.; Juarez, J. R.; Orea, M. L.; Castro, A.
Tetrahedron Lett. 2009, 50, 4208; (c) Davis, F. A.; Chao, B.; Andemichael, Y. W.;
Mohanty, P. K.; Fang, T.; Burns, D. M.; Rao, A.; Szewczyk, J. M. Heteroat. Chem.
2002, 13, 486.
12. Spiro compounds represent an important class of naturally occurring
substances characterized by highly pronounced biological properties. For a
review on the stereo-controlled synthesis of spiro compounds, see: (a)
Sannigrahi, M. Tetrahedron 1999, 55, 9007; Spirocyclopropanes are present in
O
1
Ar
aldol
A
B
Path
Path
O
O
N
R
Ar
6
Ar
N
R
II
O
2
Michael
Ar
aza-Michael
O
O
O
7
R
N
Michael
H
O
N
R
Ar
3
(one of the enantiomers)
Scheme 3. Possible mechanism for the domino reactions leading to spiropiperi-
dine-2,4-diones 3.