112
M. Jahjah et al. / Journal of Molecular Catalysis A: Chemical 332 (2010) 106–112
The catalytic activity of both systems RuL–MWCNT and
References
RuL–MWCNT was more active for substrate/metal ratios in the
range of 200–300 than RuL–SiO2, showing comparable activities for
more diluted systems; in particular for styrene/Ru = 1,000, both cat-
alysts exhibited identical behaviour (Fig. 5). The catalytic systems
are less active at lower metal load as evidenced by the increase of
ethylbenzene in relation to the full hydrogenated product, ethylcy-
clohexane, favouring in consequence the product exhibiting a faster
hydrogenation.
The reactivity differences observed between MWCNT and oxide
supports, in particular with silica, could be due to the metal-
lic nanoparticles arrangement on the support. While for silica,
they would be preferentially located inside the pores, for multi-
walled carbon nanotubes, the particles remain on the support outer
surface, favouring in this case the mass transfer under catalytic
conditions.
[1] J.D. Aiken III, R.G. Finke, J. Mol. Catal. A: Chem. A 145 (1999) 1–44.
[2] M.A. El-Sayed, Acc. Chem. Res. 34 (2001) 257–264.
[3] H. Bönnemann, R.M. Richards, Eur. J. Inorg. Chem. (2001) 2455–2480.
[4] A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102 (2002) 3757–3778.
[5] A. Roucoux, K. Philippot, Hydrogenation with Noble Metal Nanoparticles in
Handbook of Homogeneous Hydrogenations, Wiley-VCH, Weinheim, 2006.
[6] G. Schmid, V.C.H. Weinheim, Clusters and Colloids, from Theory to Applications,
1994.
[7] L.S. Ott, R.G. Finke, Coord. Chem. Rev. 251 (2007) 1075–1100.
[8] Y. Li, M.A. El-Sayed, J. Phys. Chem. B 105 (2001) 8938–8943.
[9] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105 (2005)
1025–1102.
[10] J. Durand, E. Teuma, M. Gómez, Eur. J. Inorg. Chem. (2008) 3577–3586.
[11] P. Migowski, J. Dupont, Chem. Eur. J. 13 (2007) 32–39.
[12] H. Olivier-Bourbigou, L. Magna, J. Mol. Cat. A: Chem. 182 (2002) 419–437.
[13] L. Duran Pachón, C.J. Elsevier, G. Rothenberg, Adv. Synth. Catal. 348 (2006)
1705–1710.
[14] M. Studer, H.-U. Blaser, C. Exner, Adv. Synth. Catal. 345 (2003) 45–65.
[15] H. Bönnemann, G.A. Braun, Chem. Eur. J. 3 (1997) 1200–1202.
[16] X. Zuo, H. Liu, D. Guo, X. Yang, Tetrahedron 55 (1999) 7787–7804.
[17] J.U. Köhler, J.S. Bradley, Langmuir 14 (1998) 2730–2735.
[18] B. Corain, P. Centomo, S. Lora, M. Kralik, J. Mol. Catal. A: Chem. 204–205 (2003)
755–762.
4. Conclusions
[19] H. Vu, F. Gonc¸ alves, R. Philippe, E. Lamouroux, M. Corrias, Y. Kihn, D. Plee, P.
Kalck, P. Serp, J. Catal. 240 (2006) 18–22.
[20] X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao, Nat. Mater. 6 (2007) 507–511.
[21] P. Serp, M. Corrias, P. Kalck, Catal. Appl. A. 253 (2003) 337–358.
[22] M. Ruta, I. Yuranov, P.J. Dyson, G. Laurenczy, L. Kiwi-Minsker, J. Catal. 247 (2007)
269–276.
[23] B.F.G. Johnson, Top. Catal. 24 (2003) 1–4.
[24] E.V. Starodubtseva, M.G. Vinogradov, O.V. Turova, N.A. Bumagin, E.G. Rakov, V.I.
Sokolov, Catal. Commun. 10 (2009) 1441–1442.
[25] B. Yoon, H.-B. Pan, C.M. Wai, J. Phys. Chem. C 113 (2009) 1520–1525.
[26] B. Pawelec, V. La Parola, R.M. Navarro, S. Murcia-Mascarós, J.L.G. Fierro, Carbon
44 (2006) 84–98.
[27] M. Takasaki, Y. Motoyama, K. Higashi, S.-H. Yoon, I. Mochida, H. Nagashima,
Chem. Asian J. 2 (2007) 1524–1533.
[28] J. Pan, J. Li, C. Wang, Z. Yang, React. Kinet. Catal. Lett. 90 (2007) 233–242.
[29] L. Rodríguez-Pérez, E. Teuma, A. Falqui, M. Gómez, P. Serp, Chem. Commun.
(2008) 4201–4203.
[30] I. Favier, S. Massou, E. Teuma, K. Philippot, B. Chaudret, M. Gómez, Chem. Com-
mun. (2008) 3296–3298.
In summary, small and well-dispersed ruthenium nanoparticles
supported on MWCNT were successfully used in catalytic hydro-
genation reactions of unsaturated substrates. The beneficial effect
of the support was proved comparing the catalytic behaviour with
that corresponding to the non-supported catalyst, obtaining for all
the substrates better activities using RuL–MWCNT system. More-
over, the support nature was evaluated. While Ru nanoparticles
supported on alumina and activated carbon led to lower catalytic
activities and chemoselectivities, silica and multi-walled carbon
nanotubes supported catalysts gave preferentially the full hydro-
genated products. However, only RuL–MWCNT could be reused
without activity loss exclusively leading to ethylcyclohexane, in
contrast to the analogous RuL–SiO2 catalyst.
[31] M. Corrias, B. Caussat, A. Ayral, J. Durand, Y. Kihn, P. Kalck, P. Serp, Chem. Eng.
Sci. 58 (2003) 4475–4482.
Acknowledgements
[32] A. Solhy, B.F. Machado, J. Beausoleil, Y. Kihn, F. Gonc¸ alves, M.F.R. Pereira, J.J.M.
Órfão, J.L. Figueiredo, J.L. Faria, P. Serp, Carbon 46 (2008) 1194–1207.
[33] B.K. Teo, H. Zhang in, D.L. Feldheim, C.A. Foss Jr. (Eds.), Metal Nanoparticles:
Synthesis, Characterization and Applications, Marcel Dekker, New York, 2002
(Chapter 3).
The authors thank ANR (Nanoconficat, project no. ANR-05-
NANO-030), CNRS and Université Paul Sabatier for their financial
support, and Prof. Philippe Serp and his team for the fruitful collab-
oration.
[34] (a) G. St-Pierre, A. Chagnes, N.-A. Bouchard, P.D. Harvey, L. Brossard, H. Ménard,
Langmuir 20 (2004) 6365–6373;
(b) F. Laplante, L. Brossard, H. Ménard, Can. J. Chem 81 (2003) 258–264;
(c) G. Nery, A.M. Visco, A. Donato, C. Milone, M. Malentacchi, G. Gubitosa, Appl.
Catal. A: Gen. 110 (1994) 49–59.
Appendix A. Supplementary data
[35] Turnover frequency = mol of converted substrate per mol of catalyst per hour
(based on Ru atoms on the surface).
Supplementary data associated with this article can be found, in