A R T I C L E S
Johnson et al.
The most widely studied branched macromolecules for drug
delivery are dendrimers; their nanoscale, monodisperse, mul-
tivalent structures provide functional handles for elaboration with
bioactive groups of interest.26-28 One factor that limits wide-
spread application of dendrimers is synthetic difficulty. Though
recent synthetic advances are impressive,16,29-32 it remains a
challenge to prepare functionally diverse dendrimers of variable
sizes. To overcome this challenge, researchers have appended
linear polymers to dendrimers33-36 or prepared linear polymers
with dendritic fragments attached to their side chains. The latter
“dendronized linear polymers” have attracted attention as
nanoscopic building blocks; their cylindrical shapes can provide
important advantages in nanoscale fabrication when compared
to spherical dendrimers.37-43 Similar nanoscale structures can
be formed from bottle-brush-polymers that carry long chains
grafted at high density to linear polymer backbones.44-63 Bottle-
brush polymers are prepared by graft-to, graft-from, or graft-
through methodologies. The graft-to strategy requires an efficient
coupling reaction to attach a functional molecule to every
monomer unit of a linear polymer; “click”64 reactions such as
the copper-catalyzed azide-alkyne cycloaddition65,66 (CuAAC)
and thiol-ene coupling have proven useful in this regard.43,46,67-70
Graft-from and graft-through methodologies require highly
efficient polymerization reactions capable of initiation and
propagation in sterically demanding environments.48,51-53,71
Recent developments in efficient, controlled polymerization
coupled with new click reactions provide materials chemists
with the tools to generate novel functional nanoscopic
materials.72-77
Ring-opening metathesis polymerization (ROMP) of strained
alkene- (e.g., norbornene)-terminated macromonomers (MM)
initiated by ruthenium N-heterocyclic carbene complexes (e.g.,
1, Figure 1) has recently proven useful for graft-through
synthesis of functional bottle-brush polymers;50,78-83 fast initia-
tion leads to low polydispersities (PDIs) while release of ring
(24) Lee, J.-S.; Green, J. J.; Love, K. T.; Sunshine, J.; Langer, R.;
Anderson, D. G. Nano Lett. 2009, 9, 2402–2406.
(25) Shen, Y.; Jin, E.; Zhang, B.; Murphy, C. J.; Sui, M.; Zhao, J.; Wang,
J.; Tang, J.; Fan, M.; Van Kirk, E.; Murdoch, W. J. J. Am. Chem.
Soc. 2010, 132, 4259–4265.
(52) Neugebauer, D.; Sumerlin, B. S.; Matyjaszewski, K.; Goodhart, B.;
Sheiko, S. S. Polymer 2004, 45, 8173–8179.
(26) Helms, B.; Meijer, E. W. Science 2006, 313, 929–930.
(27) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin,
S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117–132.
(28) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV. 1999,
99, 1665–1688.
(53) Sumerlin, B. S.; Neugebauer, D.; Matyjaszewski, K. Macromolecules
2005, 38, 702–708.
(54) Gao, H.; Matyjaszewski, K. J. Am. Chem. Soc. 2007, 129, 6633–
6639.
(55) Hadjichristidis, N.; Pitsikalis, M.; Iatrou, H.; Pispas, S. Macromol.
Rapid Commun. 2003, 24, 979–1013.
(56) Tsukahara, Y.; Mizuno, K.; Segawa, A.; Yamashita, Y. Macromol-
ecules 1989, 22, 1546–1552.
(57) Tsukahara, Y.; Tsutsumi, K.; Yamashita, Y.; Shimada, S. Macro-
molecules 1990, 23, 5201–5208.
(58) Dziezok, P.; Sheiko, S. S.; Fischer, K.; Schmidt, M.; Moller, M.
Angew. Chem., Int. Ed. 1998, 36, 2812–2815.
(59) Neiser, M. W.; Okuda, J.; Schmidt, M. Macromolecules 2003, 36,
5437–5439.
(60) Neiser, M. W.; Muth, S.; Kolb, U.; Harris, J. R.; Okuda, J.; Schmidt,
M. Angew. Chem., Int. Ed. 2004, 43, 3192–3195.
(61) Yuan, Y.-Y.; Du, Q.; Wang, Y.-C.; Wang, J. Macromolecules 2010,
43, 1739–1746.
(62) Li, C.; Ge, Z.; Fang, J.; Liu, S. Macromolecules 2009, 42, 2916–
2924.
(29) Montanez, M. I.; Campos, L. M.; Antoni, P.; Hed, Y.; Walter, M. V.;
Krull, B. T.; Khan, A.; Hult, A.; Hawker, C. J.; Malkoch, M.
Macromolecules 2010, 43, 6004–6013.
(30) Antoni, P.; Robb, M. J.; Campos, L.; Montanez, M.; Hult, A.;
Malmstrom, E.; Malkoch, M.; Hawker, C. J. Macromolecules 2010,
43, 6625–6631.
(31) Killops, K. L.; Campos, L. M.; Hawker, C. J. J. Am. Chem. Soc.
2008, 130, 5062–5064.
(32) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.;
Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem., Int. Ed. 2004, 43, 3928–3932.
(33) Lee, C. C.; Gillies, E. R.; Fox, M. E.; Guillaudeu, S. J.; Frechet,
J. M. J.; Dy, E. E.; Szoka, F. C. Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 16649–16654.
(34) Gillies, E. R.; Dy, E.; Frechet, J. M. J.; Szoka, F. C. Mol. Pharm.
2005, 2, 129–138.
(63) Li, A.; Lu, Z.; Zhou, Q.; Qiu, F.; Yang, Y. J. Polym. Sci., Part A:
Polym. Chem. 2006, 44, 3942–3946.
(35) Gillies, E. R.; Frechet, J. M. J. J. Org. Chem. 2004, 69, 46–53.
(36) Gillies, E. R.; Frechet, J. M. J. J. Am. Chem. Soc. 2002, 124, 14137–
14146.
(64) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021.
(37) Grayson, S. M.; Frechet, J. M. J. Macromolecules 2001, 34, 6542–
6544.
(65) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67,
3057–3064.
(38) Boydston, A. J.; Holcombe, T. W.; Unruh, D. A.; Frechet, J. M. J.;
Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 5388–5389.
(39) Zhang, A.; Zhang, B.; Waechtersbach, E.; Schmidt, M.; Schlueter,
A. D. Chem.sEur. J. 2003, 9, 6083–6092.
(66) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
(67) Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.;
Matyjaszewski, K. Macromolecules 2005, 38, 7540–7545.
(68) Gao, H.; Matyjaszewski, K. J. Am. Chem. Soc. 2007, 129, 6633–
6639.
(40) Lee, C. C.; Grayson, S. M.; Frechet, J. M. J. J. Polym. Sci., Part A:
Polym. Chem. 2004, 42, 3563–3578.
(41) Yoshida, M.; Fresco, Z. M.; Ohnishi, S.; Frechet, J. M. J. Macro-
molecules 2005, 38, 334–344.
(69) Tsarevsky, N. V.; Bernaerts, K. V.; Dufour, B.; Du Prez, F. E.;
Matyjaszewski, K. Macromolecules 2004, 37, 9308–9313.
(70) Campos, L. M.; Killops, K. L.; Sakai, R.; Paulusse, J. M. J.; Damiron,
D.; Drockenmuller, E.; Messmore, B. W.; Hawker, C. J. Macromol-
ecules 2008, 41, 7063–7070.
(42) Canilho, N.; Kaseemi, E.; Mezzenga, R.; Schlueter, A. D. J. Am.
Chem. Soc. 2006, 128, 13998–13999.
(43) Helms, B.; Mynar, J. L.; Hawker, C. J.; Frechet, J. M. J. J. Am.
Chem. Soc. 2004, 126, 15020–15021.
(71) Boerner, H. G.; Beers, K.; Matyjaszewski, K.; Sheiko, S. S.; Moeller,
M. Macromolecules 2001, 34, 4375–4383.
(44) Zhang, M.; Mueller, A. H. E. J. Polym. Sci., Part A: Polym. Chem.
2005, 43, 3461–3481.
(72) Golas, P. L.; Matyjaszewski, K. Chem. Soc. ReV. 2010, 39, 1338–
1354.
(45) Jiang, X.; Lok, M. C.; Hennink, W. E. Bioconj. Chem. 2007, 18,
2077–2084.
(73) Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Burke, D. J.; Kade, M. J.;
Hawker, C. J. Chem. ReV. 2009, 109, 5620–5686.
(74) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200–1205.
(75) Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Macromol.
Rapid Commun. 2008, 29, 1052–1072.
(46) Tsarevsky, N. V.; Bencherif, S. A.; Matyjaszewski, K. Macromol-
ecules 2007, 40, 4439–4445.
(47) Lutz, J.-F.; Boerner, H. G.; Weichenhan, K. Macromolecules 2006,
39, 6376–6383.
(48) Allen, M. J.; Wangkanont, K.; Raines, R. T.; Kiessling, L. L.
Macromolecules 2009, 42, 4023–4027.
(76) Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2007,
28, 15–54.
(49) Cheng, G.; Boeker, A.; Zhang, M.; Krausch, G.; Mueller, A. H. E.
Macromolecules 2001, 34, 6883–6888.
(77) Hawker, C. J.; Fokin, V. V.; Finn, M. G.; Sharpless, K. B. Aust.
J. Chem. 2007, 60, 381–383.
(50) Lu, H.; Wang, J.; Lin, Y.; Cheng, J. J. Am. Chem. Soc. 2009, 131,
13582–13583.
(78) Xia, Y.; Kornfield, J. A.; Grubbs, R. H. Macromolecules 2009, 42,
3761–3766.
(51) Morandi, G.; Pascual, S.; Montembault, V.; Legoupy, S.; Delorme,
N.; Fontaine, L. Macromolecules 2009, 42, 6927–6931.
(79) Xia, Y.; Olsen, B. D.; Kornfield, J. A.; Grubbs, R. H. J. Am. Chem.
Soc. 2009, 131, 18525–18532.
9
560 J. AM. CHEM. SOC. VOL. 133, NO. 3, 2011