7070
P. K. Gupta et al. / Bioorg. Med. Chem. Lett. 20 (2010) 7067–7070
Finally the hydroxamic acid 16 was found to be the most potent
References and notes
and selective inhibitor of this series. We were initially concerned
that introduction of such a high affinity ligand for Zn2+ may result
in a reduction of selectivity for HDAC6 or even give rise to a pan-
inhibitor analogous to hydroxamates 1 and 2. For example, the
structurally related compound 17, a potent HDAC inhibitor with
anticancer activity28 does not discriminate between HDAC6 and
HDAC1 (IC50 107 nM, HDAC6; 48 nM, HDAC1).
Furthermore, hydroxamate 18 showed more potent (45Â) inhi-
bition of rh-HDAC1 than rh-HDAC6 (Table 2). Suzuki et al. previ-
ously noted that loss of selectivity for HDAC6 resulted when the
aliphatic cyclopentane ring of 5 was replaced by an aromatic
ring.25 Therefore, the combined effects of both Boc and cyclopentyl
groups for HDAC6 selectivity together with the potency gains
afforded by the hydroxamate group have synergised giving 16 with
optimal HDAC6 potency and selectivity; IC50 26 nM (rh-HDAC6)
versus 1420 nM (rh-HDAC1) corresponding to 55-fold selectivity
for rh-HDAC6 over rh-HDAC1 (Table 2, Fig. 3).
Since HDAC6 and HDAC1 deacetylate alpha-tubulin and histone
H3, respectively,10,15,29 comparative hyperacetylation of these pro-
tein substrates can be used to assess HDAC6 and HDAC1 inhibition
in cells. Using these readouts, we have previously found some inhib-
itor selectivity for 5 at HDAC6 over HDAC1 in primary mouse
macrophages.21 Here we compare compounds 4, 5 and 16 in PMA-
differentiated THP-1 human macrophages. Replacement of the thiol
in 5 with hydroxamate 16 greatly enhanced inhibition of HDAC6 in
cells (>10-fold, Fig. 4), and 16 selectively inhibited HDAC6 since
ꢀ10-fold lower concentrations were required for tubulin hyperacet-
ylation than for histone H3 hyperacetylation. Compound 5 did not
display any selectivity for HDAC6 over HDAC1 in human PMA-differ-
entiated THP-1 cells (Fig. 4), in contrast to our finding in mouse mac-
rophages.21 Compound4 displayedsimilar potencytocompound16,
but had only modest selectivity in cells (Supplementary data). Thus,
16 may be a valuable in vivo probe for HDAC6 function.
1. Zhang, Y.; Fang, H.; Jiao, J.; Xu, W. Curr. Med. Chem. 2008, 15, 2840.
2. Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M. L.; Rehman, M.; Walther, T. C.;
Olsen, J. V.; Mann, M. Science 2009, 325, 834.
3. Bertos, N. R.; Wang, A. H.; Yang, X. J. Biochem. Cell Biol. 2001, 79, 243.
4. Fischle, W.; Kiermer, V.; Dequiedt, F.; Verdin, E. Biochem. Cell Biol. 2001, 79, 337.
5. Yang, X.-J.; Seto, E. Nat. Rev. Mol. Cell Biol. 2008, 9, 206.
6. Cress, W. D.; Seto, E. J. Cell. Physiol. 2000, 184, 1.
7. Emiliani, S.; Fischle, W.; Van Lint, C.; Al-Abed, Y.; Verdin, E. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 2795.
8. Grozinger, C. M.; Hassig, C. A.; Schreiber, S. L. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 4868.
9. Guardiola, A. R.; Yao, T. P. J. Biol. Chem. 2002, 277, 3350.
10. Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida,
M.; Wang, X.-F.; Yao, T.-P. Nature 2002, 417, 455.
11. Imai, S.-I.; Armstrong, C. M.; Kaeberlein, M.; Guarente, L. Nature 2000, 403, 795.
12. Landry, J.; Sutton, A.; Tafrov, S. T.; Heller, R. C.; Stebbins, J.; Pillus, L.;
Sternglanz, R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5807.
13. Smith, J. S.; Brachmann, C. B.; Celic, I.; Kenna, M. A.; Muhammad, S.; Starai, V. J.;
Avalos, J. L.; Escalante-Semerena, J. C.; Grubmeyer, C.; Wolberger, C.; Boeke, J.
D. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 6658.
14. Gao, L.; Cueto, M. A.; Asselbergs, F.; Atadja, P. J. Biol. Chem. 2002, 277, 25748.
15. Zhang, Y.; Kwon, S.; Yamaguchi, T.; Cubizolles, F.; Rousseaux, S.; Kneissel, M.;
Cao, C.; Li, N.; Cheng, H. L.; Chua, K.; Lombard, D.; Mizeracki, A.; Matthias, G.;
Alt, F. W.; Khochbin, S.; Matthias, P. Mol. Cell. Biol. 2008, 28, 1688.
16. Lee, J. Y.; Koga, H.; Kawaguchi, Y.; Tang, W.; Wong, E.; Gao, Y. S.; Pandey, U. B.;
Kaushik, S.; Tresse, E.; Lu, J.; Taylor, J. P.; Cuervo, A. M.; Yao, T. P. EMBO J. 2010,
29, 969.
17. Zhang, X.; Yuan, Z.; Zhang, Y.; Yong, S.; Salas-Burgos, A.; Koomen, J.; Olashaw,
N.; Parsons, J. T.; Yang, X. J.; Dent, S. R.; Yao, T. P.; Lane, W. S.; Seto, E. Mol. Cell
2007, 27, 197.
18. Tran, A. D.; Marmo, T. P.; Salam, A. A.; Che, S.; Finkelstein, E.; Kabarriti, R.;
Xenias, H. S.; Mazitschek, R.; Hubbert, C.; Kawaguchi, Y.; Sheetz, M. P.; Yao, T.
P.; Bulinski, J. C. J. Cell Sci. 2007, 120, 1469.
19. Estiu, G.; Greenberg, E.; Harrison, C. B.; Kwiatkowski, N. P.; Mazitschek, R.;
Bradner, J. E.; Wiest, O. J. Med. Chem. 2008, 51, 2898.
20. Halili, M. A.; Andrews, M. R.; Sweet, M. J.; Fairlie, D. P. Curr. Top. Med. Chem.
2009, 9, 309.
21. Halili, M. A.; Andrews, M. R.; Labzin, L. I.; Schroder, K.; Matthias, G.; Cao, C.;
Lovelace, E.; Reid, R. C.; Le, G. T.; Hume, D. A.; Irvine, K. M.; Matthias, P.; Fairlie,
D. P.; Sweet, M. J. J. Leukoc. Biol. 2010, 87, 1103.
22. Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian,
X.; Mills, E.; Berghs, S. C.; Carey, N.; Finn, P. W.; Collins, L. S.; Tumber, A.;
Ritchie, J. W.; Jensen, P. B.; Lichenstein, H. S.; Sehested, M. Biochem. J. 2008,
409, 581.
23. Kozikowski, A. P.; Tapadar, S.; Luchini, D. N.; Kim, K. H.; Billadeau, D. D. J. Med.
Chem. 2008, 51, 4370.
24. Maulucci, N.; Chini, M. G.; Micco, S. D.; Izzo, I.; Cafaro, E.; Russo, A.; Gallinari,
P.; Paolini, C.; Nardi, M. C.; Casapullo, A.; Riccio, R.; Bifulco, G.; Riccardis, F. D. J.
Am. Chem. Soc. 2007, 129, 3007.
In conclusion, we identify 16 as the most potent and selective
synthetic inhibitor known for the recombinant human HDAC6 en-
zyme and in human macrophages, important mediators of chronic
inflammatory diseases.
Acknowledgments
25. Suzuki, T.; Kouketsu, A.; Itoh, Y.; Hisakawa, S.; Maeda, S.; Yoshida, M.;
Nakagawa, H.; Miyata, N. J. Med. Chem. 2006, 49, 4809.
26. Miyazawa, T.; Iwanaga, H.; Yamada, T.; Kuwata, S. Biotechnol. Lett. 1994, 16,
373.
27. Heltweg, B.; Dequiedt, F.; Marshall, B. L.; Brauch, C.; Yoshida, M.; Nishino, N.;
Verdin, E.; Jung, M. J. Med. Chem. 2004, 47, 5235.
28. Kahnberg, P.; Lucke, A. J.; Glenn, M. P.; Boyle, G. M.; Tyndall, J. D.; Parsons, P. G.;
Fairlie, D. P. J. Med. Chem. 2006, 49, 7611.
29. Lagger, G.; O’Carroll, D.; Rembold, M.; Khier, H.; Tischler, J.; Weitzer, G.;
Schuettengruber, B.; Hauser, C.; Brunmeir, R.; Jenuwein, T.; Seiser, C. EMBO J.
2002, 21, 2672.
We thank the National Health Medical Research Council for
grant 569735 and the Australian Research Council for a Federation
Fellowship to D.F.
Supplementary data
Supplementary data associated (experimental methods, synthe-
sis/modeling, enzyme/cell assays) with this article can be found, in
30. Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P. J.
Am. Chem. Soc. 2010, 132, 10842.
Compound 4 was reported as HDAC6-selective with pM,23 then nM,30 inhibitory
potency. We re-examined an analogue (compound 1 in Ref. 30 Supplementary data
34) in our assay and find IC50 150 nM (HDAC6) versus 2980 nM (HDAC1) or 20-fold
selectivity (Supplementary data). Using the substrate Ac-RHKK(Ac)-ACC as used in
Ref. 30, we find their compound 1 to have IC50 41 nM (HDAC6) versus 3000 nM
(HDAC1) or 75-fold selective, whereas 16 gave IC50 27 nM (HDAC6) versus 3567 nM
(HDAC1) or 132-fold selectivity (Supplementary data). Thus, we are confident that 16
is more HDAC6-selective.