2464
M. Hoshi et al.
LETTER
(12) Alkynylindium: (a) Pérez, I.; Sestelo, J. P.; Sarandeses, L. A.
J. Am. Chem. Soc. 2001, 123, 4155. (b) Augé, J.; Lubin-
Germain, N.; Seghrouchni, L. Tetrahedron Lett. 2003, 44,
819.
amount of benzoyl chloride was employed in this one-pot
reaction. Indeed, using a stoichiometric amount of benzoyl
chloride (0.5 mmol), a decrease in the yield of product 3aa
was observed.
(13) Alkynyltin: (a) Logue, M. W.; Teng, K. J. Org. Chem. 1982,
47, 2549. (b) Kuhn, H.; Neumann, W. P. Synlett 1994, 123.
(c) Lerebours, B.; Camacho-Soto, A.; Wolf, C. J. Org.
Chem. 2005, 70, 8601.
(14) Alkynylstibine: (a) Kakusawa, N.; Yamaguchi, K.; Kurita,
J.; Tsuchiya, T. Tetrahedron Lett. 2000, 41, 4143.
(b) Kakusawa, N.; Tobiyasu, Y.; Yasuike, S.; Yamaguchi,
K.; Seki, H.; Kurita, J. J. Organomet. Chem. 2006, 691,
2953.
(24) Among amine bases including i-Pr2NEt, Et3N was the base
of choice for the cross-coupling reaction with benzoyl
chloride.
(25) To a solution of BH3 (1 mmol) in THF (3 mL) was added 2-
methylbut-2-ene (0.14 g, 2 mmol) dropwise at –15 °C under
argon, and the mixture was stirred for 2 h at 0 °C to form a
solution of disiamylborane in THF. To this solution was
added oct-1-yne (0.11 g, 1 mmol) dropwise at –15 °C, and
the mixture was stirred for 2 h at 0 °C. A solution of (E)-oct-
1-enyldisiamylborane (1a, 1 mmol) in THF, thus prepared,
was cooled to –15 °C, and Cu(acac)2 (0.013 g, 0.05 mmol)
was added to the solution under a flow of argon, followed
by dropwise addition of (trimethylsilyl)ethynyl bromide
(0.119 g, 0.67 mmol) and NaOMe (1 M, 0.75 mL, 0.75
mmol). The resulting mixture was allowed to warm
gradually to r.t. and stirred overnight. Methanol resulting
from 1 M NaOMe was removed under reduced pressure,
accompanied by the solvent. After addition of THF (3 mL)
to the residue under argon, the resulting mixture including
(E)-dec-3-en-1-yne (2a) was cooled to 0 °C, and Pd(OAc)2
(0.002 g, 0.01 mmol) and Ph3P (0.005 g, 0.02 mmol) were
added successively under a flow of argon, followed by
dropwise addition of benzoyl chloride (0.141 g, 1 mmol) and
Et3N (0.101 g, 1 mmol). The resultant mixture was stirred for
2 h at r.t. and then oxidized by the successive addition of 3
M NaOH (1 mL) and 30% H2O2 (0.5 mL) at 0 °C. After
being stirred for 1 h at this temperature, the mixture was
extracted three times with Et2O. The combined extracts were
washed with brine, dried over Na2SO4, and concentrated.
The residue was purified by flash chromatography on silica
gel, with hexane–CH2Cl2 (1:1) as eluent, to give (E)-1-
phenylundec-4-en-2-yn-1-one (3aa, 0.103 g, 86%).
Compound 3aa: 1H NMR (500 MHz, CDCl3): d = 0.89 (t,
J = 7.1 Hz, 3 H), 1.25–1.35 (m, 6 H), 1.42–1.49 (m, 2 H),
2.21–2.26 (m, 2 H), 5.74 (dt, J = 16.1, 1.5 Hz, 1 H), 6.63 (dt,
J = 16.1, 7.1 Hz, 1 H), 7.46–7.50 (m, 2 H), 7.58–7.62 (m, 1
H), 8.13–8.16 (m, 2 H). 13C NMR (125 MHz, CDCl3): d =
14.06 (CH3), 22.56 (CH2), 28.22 (CH2), 28.78 (CH2), 31.59
(CH2), 33.64 (CH2), 86.05 (≡C), 92.85 (≡C), 107.65 (=CH),
128.50 (2 × =CH), 129.50 (2 × =CH), 133.90 (=CH), 136.92
(=C), 153.10 (=CH), 178.11 (C=O). IR (neat): 2954, 2927,
2856, 2183, 1641, 1620, 1596, 1579, 1448, 1313, 1265,
1174, 956, 937, 700 cm–1. HRMS (EI): m/z calcd for
C17H20O: 240.1514; found: 240.1508.
(15) Alkynylthallium: Marko, I. E.; Southern, J. M. J. Org.
Chem. 1990, 55, 3368.
(16) (a) Kobayashi, T.; Tanaka, M. J. Chem. Soc., Chem.
Commun. 1981, 333. (b) Delaude, L.; Masdeu, A. M.; Alper,
H. Synthesis 1994, 1149. (c) Arcadi, A.; Cacchi, S.;
Marinelli, F.; Pace, P.; Sanzi, G. Synlett 1995, 823.
(d) Kang, S.-K.; Lim, K.-H.; Ho, P.-S.; Kim, W.-Y.
Synthesis 1997, 874. (e) Mohamed Ahmed, M. S.; Mori, A.
Org. Lett. 2003, 5, 3057. (f) Liang, B.; Huang, M.; You, Z.;
Xiong, Z.; Lu, K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem.
2005, 70, 6097. (g) Sans, V.; Trzeciak, A. M.; Luis, S.;
Ziółkowski, J. J. Catal. Lett. 2006, 109, 37. (h) Rahman,
M. T.; Fukuyama, T.; Kamata, N.; Sato, M.; Ryu, I. Chem.
Commun. 2006, 2236. (i) Ma, W.; Li, X.; Yang, J.; Liu, Z.;
Chen, B.; Pan, X. Synthesis 2006, 2489. (j) Liu, J.; Chen, J.;
Xia, C. J. Catal. 2008, 253, 50. (k) Tambade, P. J.; Patil,
Y. P.; Nandurkar, N. S.; Bhanage, B. M. Synlett 2008, 886.
(l) Liu, J.; Peng, X.; Sun, W.; Zhao, Y.; Xia, C. Org. Lett.
2008, 10, 3933. (m) Fusano, A.; Fukuyama, T.; Nishitani,
S.; Inouye, T.; Ryu, I. Org. Lett. 2010, 12, 2410.
(17) Vong, B. G.; Kim, S. H.; Abraham, S.; Theodorakis, E. A.
Angew. Chem. Int. Ed. 2004, 43, 3947.
(18) Inhülsen, I.; Margaretha, P. Org. Lett. 2010, 12, 728.
(19) (a) Shergina, S. I.; Sokolov, I. E.; Zanina, A. S. Mendeleev
Commun. 1994, 4, 207. (b) Van den Hoven, B. G.; El Ali,
B.; Alper, H. J. Org. Chem. 2000, 65, 4131.
(20) (a) Hoshi, M.; Nakayabu, H.; Shirakawa, K. Synthesis 2005,
1991. (b) Hoshi, M.; Suzuki, S.; Saitoh, S.; Okimoto, M.;
Shirakawa, K. Tetrahedron Lett. 2007, 48, 119. (c) Hoshi,
M.; Iizawa, T.; Okimoto, M.; Shirakawa, K. Synthesis 2008,
3591.
(21) (a) Hoshi, M.; Shirakawa, K. Synlett 2002, 1101. (b) Hoshi,
M.; Kawamura, N.; Shirakawa, K. Synthesis 2006, 1961.
(22) Compound 2a was formed in about 75% GC yield based on
Me3SiC≡CBr employed, see ref. 21.
(23) Considering that acid chloride would be consumed by
reaction with residual both NaOMe and MeOH, an excess
(26) Compounds 2b–d were formed in 72–74% GC yields based
on Me3SiC≡CBr employed; unpublished results.
Synlett 2010, No. 16, 2461–2464 © Thieme Stuttgart · New York