at C-4 of the pyridazin-3(2H)-one.3,5 Moreover, the coordina-
tion creates a proximity effect of R- toward C-4 (intramo-
lecular reaction). Nucleophilic addition is expected to occur
easier on more electrophilic substrates, presumably explain-
ing the differences observed between substrates 3a and 3b.
Nucleophilic addition at C-4 yields the anionic σH-adduct
B, which is inductively stabilized by the halogen atom at
C-5 and resonance stabilized at N-1 (Scheme 1). Upon
addition of electrophile a 5-substituted 4-alkyl (or 4-aryl)-
2-benzyl-5-halo-4,5-dihydropyridazin-3(2H)-one (C) is formed,
which subsequently eliminates HX yielding 4 (Scheme 1).6
Remarkably, when benzoyl chloride was used as the elec-
trophile no elimination occurs and 5-benzoyl-2-benzyl-4-
alkyl-5-chloro-4,5-dihydropyridazin-3(2H)-ones (6) were
isolated (Table 2). This supports our mechanistic hypothesis.
explain why weaker electrophiles such as DMF, Me2S2, and
I2 cannot be used in our functionalization process (Table 1,
entries 11, 12, and 15). This was further supported by an
experiment in which MeSSMe was replaced by the more
electrophilic MeSSO2Me, smoothly yielding the desired
pyridazin-3(2H)-one 4l in 83% yield (Table 1, entry 13). A
similar reaction involving PhMgCl as the nucleophile gave
2-benzyl-4-phenyl-5-methylthiopyridazin-3(2H)-one (4m) in
a good yield (Table 1, entry 14). Analogously, when I2 was
replaced by ICl as reagent in a reaction with n-BuMgCl,
2-benzyl-4-butyl-5-chloropyridazin-3(2H)-one (4n) could be
obtained (Table 1, entry 16). The use of more electrophilic
Br2 gave a higher yield of 4n (Table 1, entry 17). Interest-
ingly, no trace of 2-benzyl-4-butyl-5-iodopyridazin-3(2H)-
one or 5-bromopyridazin-3(2H)-one was detected when using
ICl or Br2, respectively, as the electrophile. This can be
rationalized in terms of better leaving group properties of
iodine and bromine. Reaction of 3b with PhMgCl and
quenching with Br2 gave 2-benzyl-5-chloro-4-phenylpy-
ridazin-3(2H)-one (4o) (Table 1, entry 18). The 5-chloro-4-
(alkyl or aryl)pyridazin-3(2H)-one compound class is very
interesting as the C-5 chlorine allows further decoration of
the pyridazinone core via SNAE and Pd-catalyzed cross-
coupling reactions.2,9,10 When alcohols are used as nucleo-
philes on 5-chloro-4-arylpyridazin-3(2H)-one substrates for
instance, 5-alkoxy-4-arylpyridazin-3(2H)-ones are obtained.
This pyridazin-3(2H)-one subclass possesses interesting
biological properties such as the recently disclosed insecti-
cidal activity against Myzus Persicae.11 An example of a
Pd-catalyzed cross-coupling reaction on 4-aryl-5-chloropy-
ridazin-3(2H)-ones is a Suzuki reaction with arylboronic
Table 2. Attempted Cine Substitution on
5-Chloropyridazin-3(2H)-one (3b) with Benzoyl Chloride as
Electrophilea
entry
R
electrophile
6
yield (%)
1
2
n-Bu
i-Pr
PhCOCl
PhCOCl
6a
6b
37
60
a 3b (1 mmol), 0.5 mL of 2 M RMgCl (1 equiv), THF (4 mL), -20 °C,
1 min; electrophile (1.5 equiv); aq NH4Cl.
Mechanistically, the reaction is a cine-type substitution in
which the anionic σH-adduct formed upon nucleophilic
addition is quenched by electrophiles (other than a proton)
before elimination takes place.7,8 To the best of our
knowledge no such cine nucleophilic substitutions of hy-
drogen have hitherto appeared in the literature. The resonance
and inductive stabilization effects of the anionic species B
(9) For reviews dealing with Pd-catalyzed reactions on halopyridazines
and halopyridazin-3(2H)-ones, see: (a) Maes, B. U. W.; Kosˇmrlj, J.; Lemie`re,
G. L. F. J. Heterocycl. Chem. 2002, 39, 535. (b) Maes, B. U. W.;
Tapolcsa´nyi, P.; Meyers, C.; Ma´tyus, P. Curr. Org. Chem. 2006, 10, 377.
(c) Maes, B. U. W. In Palladium in Heterocyclic Chemistry (Tetrahedron
Organic Chemistry Series); Li, J. J., Gribble, G. W., Eds.; Elsevier: New
york, 2006; Vol. 26, p 541
.
(10) For selected examples of Pd-catalyzed reactions on halopyridazines
and halopyridazin-3(2H)-ones, see: (a) Turck, A.; Ple´, N.; Mojovic, L.;
Que´guiner, G. Bull. Soc. Chim. Fr. 1993, 130, 488. (b) Tre´court, F.; Turck,
A.; Ple´, N.; Paris, A.; Que´guiner, G. J. Heterocycl. Chem. 1995, 32, 1057.
(c) Draper, T. L.; Bailey, T. R. J. Org. Chem. 1995, 60, 748. (d) Turck, A.;
Ple´, N.; Lepreˆtre-Gaque`re, A.; Que´guiner, G. Heterocycles 1998, 49, 205.
(e) Parrot, I.; Rival, Y.; Wermuth, C. G. Synthesis 1999, 1163. (f) Maes,
B. U. W.; R’kyek, O.; Kosˇmrlj, J.; Lemie`re, G. L. F.; Esmans, E.; Rozenski,
J.; Dommisse, R. A.; Haemers, A. Tetrahedron 2001, 57, 1323. (g) R’Kyek,
O.; Maes, B. U. W.; Jonckers, T. H. M.; Lemie`re, G. L. F.; Dommisse,
R. A. Tetrahedron 2001, 57, 10009. (h) Tapolcsa´nyi, P.; Krajsovszky, G.;
Ando´, R.; Lipcsey, P.; Horva´th, G.; Ma´tyus, P.; Riedl, Z.; Hajo´s, G.; Maes,
B. U. W.; Lemie`re, G. L. F. Tetrahedron 2002, 58, 10137. (i) Parrot, I.;
Ritter, G.; Wermuth, C. G.; Hibert, M. Synlett 2002, 1123. (j) Sotelo, E.;
Coelho, A.; Ravin˜a, E. Tetrahedron Lett. 2003, 44, 4459. (k) Stevenson,
T. M.; Crouse, B. A.; Thieu, T. V.; Gebreysus, C.; Finkelstein, B. L.;
Sethuraman, M. R.; Dubas-Cordery, C. M.; Piotrowski, D. L. J. Heterocycl.
Chem. 2005, 42, 427. (l) Johnston, K. A.; Allcock, R. W.; Jiang, Z.; Collier,
I. D.; Blakli, H.; Rosair, G. M.; Bailey, P. D.; Morgan, K. M.; Kohno, Y.;
Adams, D. R. Org. Biomol. Chem. 2008, 6, 175. (m) Clapham, K. M.;
Batsanov, A. S.; Greenwood, R. D. R.; Bryce, M. R.; Smith, A. E.; Tarbit,
(6) The elimination of HX from 5-substituted 4-alkyl (or 4-aryl)-2-
benzyl-5-halo-4,5-dihydropyridazin-3(2H)-one (C) can occur before or after
the addition of NH4Cl.
(7) For reviews and a book dealing with nucleophilic aromatic substitu-
tion of hydrogen see: (a) Chupakhin, O. N.; Charushin, V. N.; van der Plas,
H. C. Nucleophilic Aromatic Substitution of Hydrogen; Academic Press:
San Diego, CA, 1994. (b) Suwin˜ski, J.; Œwierczek, K. Tetrahedron 2001,
57, 1639. (c) van der Plas, H. C. AdV. Heterocycl. Chem. 2004, 86, 1. (d)
Ma´kosza, M.; Wojciechowski, K. Chem. ReV. 2004, 104, 2631. (e)
Gulevskaya, A. V.; Pozharskii, A. F. Russ. Chem. Bull. 2008, 57, 913. (f)
Ma´kosza, M. Chem. Soc. ReV. 2010, 39, 2855
.
(8) For cine substitutions in 5-bromo- and 5-chloropyridazine-3,6(1H,2H)-
diones with O, S, and N nucleophiles yielding the corresponding 4-substi-
tuted pyridazine-3,6(1H,2H)-diones see: (a) Stam, C.; Zwinselman, J. J.;
van der Plas, H. C.; Bałoniak, S. J. Heterocycl. Chem. 1979, 16, 855. (b)
Bałoniak, S.; Ostrowicz, A. Pol. J. Chem. 1991, 65, 1085. (c) Bałoniak, S.;
Ostrowicz, A. Pol. J. Chem. 1992, 66, 935. Cine substitutions in halopy-
ridazin-3(2H)-ones have not been reported. Addition of Grignard reagents
to pyridazine derivatives yielding substituted dihydropyridazines have been
described. A separate reaction step is normally required for a full reoxidation
to the pyridazine. For examples, see: (d) Tisˇler, M.; Stanovnik, B. In
ComprehensiVe Heterocyclic Chemistry I; Katritzky, A. R., Rees, C. W.,
Boulton, A. J., McKillop, A., Eds.; Elsevier: New York, 1984; Vol. 3, p 1.
(e) Coates, W. J. In ComprehensiVe Heterocyclic Chemistry II; Katritzky,
A. R., Rees, C. W., Scriven, E. F. V., Boulton, A. J., Eds.; Elsevier: New
B. J. Org. Chem. 2008, 73, 2176
.
(11) Lehr, S.; Schenke, T.; Rosinger, C. H.; Fischer, R.; Haeuser-Hahn,
I.; Feucht, D.; Dittgen, J.; Cristau, P.; Gaertzen, O.; Hermann, S.; Malsam,
O.; Franken, E.-M. WO 2010078912 A1, 2010.
(12) (a) Li, C. S.; Brideau, C.; Chan, C. C.; Savoie, C.; Claveau, D.;
Charleson, S.; Gordon, R.; Greig, G.; Gauthier, J. Y.; Lau, C. K.; Riendeau,
D.; The´rien, M.; Wong, E.; Prasit, B. Bioorg. Med. Chem. Lett. 2003, 13,
597. (b) Li, C. S.; Prasit, P.; Gauthier, J. Y.; Lau, C. K.; Therien, M. WO
Patent 9841511 A1, 1998; Chem. Abstr. 1998, 129, 275920.
York, 1996; Vol. 6, p 1
.
274
Org. Lett., Vol. 13, No. 2, 2011