the conditions and to extend the scope of such hydro-
genation reactions. Thereby, fine-tuning and balancing of
the Lewis acidity and basicity of pyrazolylboranes related to
6 might lead to further enhancement of their catalytic
performance.
Notes and references
1 P. P. Power, Nature, 2010, 463, 171; A. Kenward and W. E. Piers,
Angew. Chem., Int. Ed., 2008, 47, 38; G. J. Kubas, J. Organomet.
Chem., 2009, 694, 2648.
2 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010, 49, 46;
D. W. Stephan, Dalton Trans., 2009, 3129; D. W. Stephan, Org.
Biomol. Chem., 2008, 6, 1535.
3 (a) T. Rokob, A. Hamza and I. Papai, J. Am. Chem. Soc., 2009,
´
131, 10701; (b) G. C. Welch and D. W. Stephan, J. Am. Chem. Soc,
2007, 129, 1880; (c) P. A. Chase, G. C. Welch, T. Jurca and
D. W. Stephan, Angew. Chem., Int. Ed., 2007, 46, 8050;
(d) G. C. Welch, R. R. San Juan, J. D. Masuda and
D. W. Stephan, Science, 2006, 314, 1124.
4 Selected articles: S. J. Geier and D. W. Stephan, J. Am. Chem. Soc.,
2009, 131, 3476; P. A. Chase, T. Jurca and D. W. Stephan, Chem.
Commun., 2008, 1701; D. P. Huber, G. Kehr, K. Bergander,
Fig. 2 ORTEP diagram of 6 with thermal displacement parameters
drawn at 50% probability. Selected bond lengths (A) and angles (1):
N1–B 1.4281(16), N1–N2 1.4094(12), N2–C1 1.3094(14), C1–C2
1.4230(16), C2–C3 1.3541(16), N1–C3 1.4013(14), B–C12 1.5756(18),
B–C18 1.5764(17); B–N1–N2 113.26(9), B–N1–C3 136.66(9),
N2–N1–C3 109.85(8), N1–N2–C1 105.58(9), N1–B–C12 117.14(10),
N1–B–C18 123.00(11), C12–B–C18 119.56(10).
R. Frohlich, G. Erker, S. Tanino, Y. Ohki and K. Tatsumi,
¨
Organometallics, 2008, 27, 5279; D. Chen and J. Klankermayer,
Chem. Commun., 2008, 2130; V. Sumerin, F. Schulz, M. Nieger,
M. Leskela, T. Repo and B. Rieger, Angew. Chem., Int. Ed., 2008,
¨
47, 6001; G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink,
J. D. Masuda, P. Wie and D. W. Stephan, Dalton Trans.,
2007, 3407.
5 (a) P. Spies, G. Kehr, K. Bergander, B. Wibbeling, R. Frohlich and
¨
G. Erker, Dalton Trans., 2009, 1534; (b) P. Spies, S. Schwendemann,
DEa = +9.9 kcal molꢀ1 relative to 6 and H2. This barrier is
somewhat higher, but falls in the same range as that calculated
for the corresponding annulated pyrazole–borane system by
application of a similar functional (M05-2X).10 The H–H bond
length in the TS is 0.85 A, indicating the presence of an early
transition state. Full cleavage of this bond and formation
of cis-5 (DE = ꢀ25.3 kcal molꢀ1) is exothermic, and the
S. Lange, G. Kehr, R. Frohlich and G. Erker, Angew. Chem., Int.
¨
¨
Ed., 2008, 47, 7543; (c) H. Wang, R. Frohlich, G. Kehr and
G. Erker, Chem. Commun., 2008, 5966; (d) S. J. Geier,
T. M. Gilbert and D. W. Stephan, J. Am. Chem. Soc., 2008, 130,
12632; (e) P. Spies, G. Erker, G. Kehr, K. Bergander, R. Frohlich,
¨
S. Grimme and D. W. Stephan, Chem. Commun., 2007, 5072.
subsequent rearrangement to trans-5 (DE = ꢀ28.5 kcal molꢀ1
affords an additional energy release of 3.2 kcal molꢀ1.z
)
¨
6 V. Summerin, F. Schulz, M. Nieger, C. Wang, M. Leskela,
P. Pyykko, T. Repo and B. Rieger, J. Organomet. Chem., 2009,
¨
694, 2654; V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger,
Initial studies indicate that the pyrazolium-borate trans-5
can be used as a metal-free catalyst for the hydrogenation of
imines under the conditions reported by Rieger et al. (8 mol%
catalyst loading, 2 bar H2 pressure, 110 1C), and the reduction
of N-(benzylidene)benzylamine resulted in 63% conversion to
bis(benzyl)amine.z Further studies are required to optimize
M. Leskela, T. Repo, P. Pyykko and B. Rieger, J. Am. Chem. Soc.,
¨
2008, 130, 14117.
¨
7 (a) D. Holschumacher, T. Bannenberg, C. G. Hrib, P. G. Jones and
M. Tamm, Angew. Chem., Int. Ed., 2008, 47, 7428;
(b) D. Holschumacher, C. Taouss, T. Bannenberg, C. G. Hrib,
C. G. Daniliuc, P. G. Jones and M. Tamm, Dalton Trans., 2009, 6927.
8 P. A. Chase and D. W. Stephan, Angew. Chem., Int. Ed., 2008, 47,
7433; P. A. Chase, A. L. Gille, T. M. Gille and D. W. Stephan,
Dalton Trans., 2009, 7179.
9 A. Jana, G. Tavcar, H. W. Roesky and C. Schulzke, Dalton Trans.,
2010, 39, 6217; A. Jana, I. Objartel, H. W. Roesky and D. Stalke,
Inorg. Chem., 2009, 48, 7645.
10 (a) G. Lu, H. Li, L. Zhao, F. Huang and Z.-X. Wang, Inorg.
Chem., 2010, 49, 295; (b) Z.-X. Wang, G. Lu, H. Li and L. Zhao,
Chin. Sci. Bull., 2010, 55, 239.
11 (a) M. Yalpani, R. Koster, R. Boese and W. A. Brett, Angew.
¨
Chem., 1990, 102, 318; (b) P. von Rague
´
Schleyer and M. Buhl,
¨
Angew. Chem., 1990, 102, 320; (c) M. Yalpani, R. Boese and
R. Koster, Chem. Ber., 1990, 123, 1275.
¨
12 R. C. Neu, E. Y. Ouyang, S. J. Geier, X. Zhao, A. Romos and
D. W. Stephan, Dalton Trans., 2010, 39, 4285; M. Ullrich,
A. J. Lough and D. W. Stephan, J. Am. Chem. Soc., 2009, 131, 52;
C. Jiang, O. Blacque and H. Berke, Organometallics, 2009, 28, 5233.
13 S. J. Geier, A. L. Gille, T. M. Gilbert and D. W. Stephan, Inorg.
Chem., 2009, 48, 10466; D. Vagedes, G. Kehr, D. Konig,
¨
¨
K. Wedeking, R. Frohlich, G. Erker, C. Muck-Lichtenfeld and
¨
S. Grimme, Eur. J. Inorg. Chem., 2002, 2015.
Fig. 3 Structure of the transition state (CH3 and CF groups were
omitted for clarity) and potential-energy profile for heterolytic H2
cleavage with 6. Values correspond to DE = zero-point uncorrected
M06-2X/6-311++G(d,p) electronic energies, DHo298 = enthalpies at
298 K (in round brackets), DGo298 = Gibbs free energies at 298 K
[in square brackets].
14 C. Ferna
J. Elguero, J. Mol. Struct., 1995, 355, 265.
15 An even shorter B–N bond of 1.401(5) A was reported for a related
´
ndez-Castano, C. Foces-Foces, N. Jagerovic and
(N-pyrrolyl)B(C6F5)2 system, see: G. Kehr, R. Frohlich,
B. Wibbeling and G. Erker, Chem.–Eur. J., 2000, 6, 258.
¨
c
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 8561–8563 8563