ORGANIC
LETTERS
2009
Vol. 11, No. 22
5358-5361
Enantioselective Synthesis of Allylic
Alcohols via an Oxazaborolidinium Ion
Catalyzed Diels-Alder/Retro-Diels-
Alder Sequence
Simon Jones* and Damien Valette
Department of Chemistry, UniVersity of Sheffield, Dainton Building, Brook Hill,
Sheffield S3 7HF, U.K.
simon.jones@sheffield.ac.uk
Received October 2, 2009
ABSTRACT
A triflimide-activated oxazaborolidine catalyst successfully promoted the asymmetric Diels-Alder reaction of 9-methylanthracene with
methacrolein in high regio- and enantioselectivity. The cycloadduct obtained was subsequently used as a chiral template to access secondary
and tertiary allylic alcohols in good to high enantiomeric excess via a cycloreversion by flash vacuum pyrolysis.
Chiral allylic alcohols are versatile synthetic intermediates
and may be accessed by numerous routes, including selective
1,2-reduction of R,ꢀ-unsaturated carbonyl compounds,1
kinetic resolution,2 and enantioselective addition of vinyl
groups to aldehydes.3-5 Although the latter methodology
allows the formation of a wide range of secondary alcohols,
only a few asymmetric catalytic systems have been optimized
to promote efficient vinyl addition to ketones.6 In this paper,
we report a new strategy to access secondary allylic alcohols
in high enantioselectivity and quaternary centers in excellent
yield.
Research from our group7 and others8 has previously
demonstrated the efficiency of a Diels-Alder/retro-Diels-
(5) (a) dem Bussche-Hu¨nnelfeld, J. L.; Seebach, D. Tetrahedron 1992,
48, 5719–5730. (b) Soai, K.; Takahashi, K. J. Chem. Soc., Perkin Trans. 1
1994, 1257–1258. (c) Saito, S.; Kano, T.; Hatanaka, K.; Yamamoto, H. J.
Org. Chem. 1997, 62, 5651–5656. (d) Tomita, D.; Wada, R.; Kanai, M.;
Shibasaki, S. J. Am. Chem. Soc. 2005, 127, 4138–4139. (e) Sato, I.; Asakura,
N.; Iwashita, T. Tetrahedron: Asymmetry 2007, 18, 2638–2642.
(6) (a) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538–6539.
(b) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 8355–8361.
(7) (a) Jones, S.; Atherton, J. C. C. Tetrahedron: Asymmetry 2001, 12,
1117–1119. (b) Atherton, J. C. C.; Jones, S. Tetrahedron Lett. 2001, 42,
8239–8241. (c) Atherton, J. C. C.; Jones, S. J. Chem. Soc., Perkin Trans.
1 2002, 2166–2173. (d) Jones, S.; Bawa, R. A. Tetrahedron 2004, 60, 2765–
2770. (e) Adams, H.; Jones, S.; Ojea-Jimenez, I. Org. Biomol. Chem. 2006,
4, 2296–2303. (f) Adams, H.; Bawa, R. A.; Jones, S. Org. Biol. Chem.
2006, 4, 4206–4213. (g) Adams, H.; Bawa, R. A.; McMillan, K. G.; Jones,
S. Tetrahedron: Asymmetry 2007, 18, 1003–1012.
(1) For examples, see: (a) Noyori, R.; Tomino, I.; Nishizawa, M. J. Am.
Chem. Soc. 1979, 101, 5843–5844. (b) Ohkuma, T.; Ooka, H.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417–10418. (c) Corey, E. J.;
Bakashi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. J. Am. Chem. Soc.
1987, 109, 7925–7926. (d) Brown, H. C.; Srebnik, M.; Ramachandran, P. V.
J. Org. Chem. 1989, 54, 4504–5844.
(2) For examples, see: (a) Martin, V. S.; Woodard, S. S.; Katsuki, T.;
Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103,
6237–6240. (b) Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1991, 113,
6129–6139. (c) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc.
1997, 119, 1492–1493.
(3) For reviews, see: (a) Soai, K.; Niwa, S. Chem. ReV. 1992, 92, 833–
856. (b) Pu, L.; Yu, H.-B. Chem. ReV. 2001, 101, 757–824
.
(4) (a) Oppolzer, W.; Radinov, R. N. Tetrahedron Lett. 1988, 29, 5645–
5648. (b) Oppolzer, W.; Radinov, R. N. HelV. Chim. Acta 1992, 75, 170–
173. (c) Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002,
124, 12225–12231. (d) Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2003,
(8) (a) Corbett, M. S.; Liu, X.; Sanyal, A.; Snyder, J. K. Tetrahedron
Lett. 2003, 44, 931–935. (b) Burgess, K. L.; Lajkiewicz, N. J.; Sanyal, A.;
Yan, W.; Snyder, J. K. Org. Lett. 2005, 7, 31–34. (c) Sanyal, A.; Yuan, Q.;
Snyder, J. K. Tetrahedron Lett. 2005, 46, 2475–2478.
125, 10677–10683
.
10.1021/ol902280d CCC: $40.75
Published on Web 10/26/2009
2009 American Chemical Society