C O M M U N I C A T I O N S
Table 2. Radical Cyclizations to Carbocycles Terminated by
for the chemoselectivity of the HAT, we suggest that the steric
shielding of the hydrido ligands in [IrH2Cl(CO)(PPh3)2] by PPh3
retards the trapping of radicals of type A. This could be especially
relevant for the tertiary radicals employed here.
Ir-Catalyzed HAT (1.5 equiv of Coll ·HCl, 3 equiv of Mn, 0.1 M
THF, 4 atm H2)
In the case of 4, the situation is more complex. After the
cyclization, a highly reactive vinyl radical is generated that is not
trapped Cp2TiCl. Instead, its high reactivity results either in a
reduction by the Ir-catalyzed HAT or by a HAT from THF. In the
latter case, a tetrahydrofuranyl radical is generated that can be either
trapped by Cp2TiCl or reduced by an Ir-catalyzed HAT. The 80%
isolated yield of 5 obtained in the presence of 1 (37% without 1)
demonstrates that the coupling of the catalytic cycles is not affected
by the nature of the final HAT step. The identical diastereoselec-
tivity of the formation of 4 with or without 1 may suggest an initial
HAT from THF. Hydrogenation catalysts, such as Wilkinson’s
catalyst, RhCl(PPh3)3,10 are not useful, because hydrogenation,
especially of alkynes, competes with the desired coupling of the
catalytic cycles. Table 1 summarizes further examples of the
synthesis of pyrrolidines.
entry
substrate
conditions
producta
1
2
3
4
5
14b
14b
14b
16d
18f
10 mol % Cp2TiCl2, 1 mol % 1
10 mol % Cp2TiCl2, 5 mol % 1
15 mol % Cp2TiCl2, 5 mol % 1
15 mol % Cp2TiCl2, 5 mol % 1
15 mol % Cp2TiCl2, 5 mol % 1
15, 60%c
15, 71%c
15, 88%c
17, 68%e
19, 91%g
a All products can be diastereoconvergently hydrogenated to the trans
products with Crabtree’s catalyst.12 b dr ) 96:4. c dr ) 63:37. d dr )
99:1. e dr ) 85:15. f dr ) 98:2. g dr ) 67:33.
HAT with H2 as terminal reductant. It is essential that the HAT
catalyst, Vaska’s complex, is not a hydrogenation catalyst.
Table 1. Radical Cyclizations Terminated by Ir-Catalyzed HAT (1.5
equiv of Coll ·HCl, 3 equiv of Mn, 0.1 M THF, 4 atm H2)
Acknowledgment. We thank the Alexander von Humboldt-
Stiftung, Fonds der Chemischen Industrie, and DFG for support.
Supporting Information Available: Experimental details and
compound characterization. This material is available free of charge
References
(1) Rowlands, G. J. Tetrahedron 2010, 66, 1593–1636.
entry
substrate
conditions
product
(2) (a) Cuerva, J. M.; Campan˜a, A. G.; Justicia, J.; Rosales, A.; Oller-Lo´pez,
J. L.; Robles, R.; Ca´rdenas, D. J.; Bun˜uel, E.; Oltra, J. E. Angew. Chem.,
Int. Ed. 2006, 118, 5522–5526. (b) Paradas, M.; Campan˜a, A. G.; Jime´nez,
T.; Robles, R.; Oltra, J. E.; Bun˜uel, E.; Justicia, J.; Ca´rdenas, D. J.; Cuerva,
J. M. J. Am. Chem. Soc. 2010, 132, 12748–12756.
1
2
3
4
5
6
6
8
10
12
15 mol % Cp2TiCl2, 5 mol % 1
7, 72%
15 mol % Kagan’s complex, 5 mol % 1 7, 77%a
15 mol % Cp2TiCl2, 5 mol % 1
15 mol % Cp2TiCl2, 5 mol % 1
15 mol % Cp2TiCl2, 5 mol % 1
9, 76%b
11, 70%c
13, 70%d
(3) (a) Spiegel, D. A.; Wiberg, K. B.; Schacherer, L. N.; Medeiros, M. R.;
Wood, J. L. J. Am. Chem. Soc. 2005, 127, 12513–12515. (b) Renaud, P.
J. Am. Chem. Soc. 2005, 127, 14204–14205.
(4) (a) Iida, H.; Krische, M. J. Top. Curr. Chem. 2007, 279, 77–104. (b)
Gansa¨uer, A.; Fan, C.-A.; Piestert, F. J. Am. Chem. Soc. 2008, 130, 6916–
6917.
(5) (a) Smith, D. M.; Pulling, M. E.; Norton, J. R. J. Am. Chem. Soc. 2007,
129, 770–771. (b) Hartung, J.; Pulling, M. E.; Smith, D. M.; Yang, D. X.;
Norton, J. R. Tetrahedron 2008, 64, 11822–11830.
(6) (a) Vaska, L. Acc. Chem. Res. 1968, 1, 335–344. (b) Vaska, L.; DiLuzio,
J. W. J. Am. Chem. Soc. 1962, 84, 679–680.
(7) (a) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986–
997. (b) Gansa¨uer, A.; Bluhm, H.; Pierobon, M. J. Am. Chem. Soc. 1998,
120, 12849–12859. (c) Gansa¨uer, A.; Justicia, J.; Fan, C.-A.; Worgull, D.;
Piestert, F. Top. Curr. Chem. 2007, 279, 25–52.
(8) (a) Gansa¨uer, A.; Pierobon, M. Synlett 2000, 1357, 1359. (b) Friedrich, J.;
Walczak, K.; Dolg, M.; Piestert, F.; Lauterbach, T.; Worgull, D.; Gansa¨uer,
A. J. Am. Chem. Soc. 2008, 130, 1788–1796.
(9) (a) Beauchamp, J. L.; Simo˜es, J. A. M. Chem. ReV. 1990, 90, 629–688.
(b) Bakac, A. Inorg. Chem. 1998, 37, 3548–3552. (c) Eisenberg, D. C.;
Norton, J. R. Isr. J. Chem. 1991, 31, 55–66.
(10) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A
1965, 1711, 1732.
a er ) 63:37. b dr ) 96:4. c dr ) 91:9. d dr ) 89:11.
For all substrates investigated, satisfactory yields of the desired
products could be obtained. Gratifyingly, the aryl-substituted olefins
are formed in much higher selectivity [(E):(Z) ) 89:11 to 96:4,
see Supporting Information for details] than 5. Presumably, this is
due to enhanced steric interactions by aryl substitution. Kagan’s
complex,11 bearing two bulky menthyl substituents at the cyclo-
pentadienyl ligands, gave only a slightly higher yield (entry 2) than
Cp2TiCl2. This indicates that interactions between the two metal
complexes can be neglected and provides yet another hint that the
two catalytic cycles operate independently.
Reactions leading to carbocyclic products can also proceed in
high yields. Table 2 summarizes the development of efficient
reaction conditions. For 1, a catalyst loading of 5 mol % (entry 2)
is sufficient, whereas a reduction to 1 mol % (entry 1) leads to
unsatisfactory yields. For Cp2TiCl2, a catalyst loading of 15 mol
% is adequate for high yields (entries 3 and 5).
(11) (a) Cesarotti, E.; Kagan, H. B.; Goddard, R.; Kru¨ger, C. J. Organomet.
Chem. 1978, 162, 297–309. (b) Gansa¨uer, A.; Bluhm, H.; Pierobon, M.;
Keller, M. Organometallics 2001, 20, 914–919. (c) Gansa¨uer, A.; Fan, C.-
A.; Keller, F.; Keil, J. J. Am. Chem. Soc. 2007, 129, 3484–3485.
(12) (a) Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organomet. Chem. 1977,
141, 205–215. (b) Stork, G.; Kahne, D. E. J. Am. Chem. Soc. 1983, 105,
1072–1073.
In summary, we have devised a system of coupled catalytic
cycles for sustainable radical cyclizations terminated by Ir-catalyzed
JA109362M
9
J. AM. CHEM. SOC. VOL. 133, NO. 3, 2011 417