This photoreactivity was surprising as the 14+, and 34+,
complexes are stable to irradiation in air or under N2.
However, we had noted that structurally similar ligands can
have surprisingly different sensitivities in a previous study of
the ruthenium complexes tatpp and benzodipyrido[3,2-a:2¢,3¢-
c]phenazine. Irradiation of the latter complex in the presence of
O2 yields the quinone, dipyrido[3,2-a:2¢,3¢-c]benzo[3,4]phenazine-
11,16-quinone, whereas the tatpp complex is not changed.31
15 P. Lei, M. Hedlund, R. Lomoth, H. Rensmo, O. Johansson and L.
Hammarstrom, J. Am. Chem. Soc., 2008, 130, 26–27.
16 N. de Tacconi, R. Chitakunye, F. M. Macdonnell and R. O. Lezna,
J. Phys. Chem. A, 2008, 112, 497–507.
17 N. R. de Tacconi, R. O. Lezna, R. Konduri, F. Ongeri, K. Rajeshwar
and F. M. MacDonnell, Chem.–Eur. J., 2005, 11, 4327–4339.
18 R. Konduri, N. R. de Tacconi, K. Rajeshwar and F. M. MacDonnell,
J. Am. Chem. Soc., 2004, 126, 11621–11629.
19 R. Konduri, H. Ye, F. M. MacDonnell, S. Serroni, S. Campagna and
K. Rajeshwar, Angew. Chem., Int. Ed., 2002, 41, 3185–3187.
20 T. K. Janaratne, A. Yadav, F. Ongeri and F. M. MacDonnell, Inorg.
Chem., 2007, 46, 3420–3422.
Conclusion
21 K. L. Wouters, N. R. Tacconi, R. Konduri, R. O. Lezna and F. M.
MacDonnell, Photosynth. Res., 2006, 87, 41–55.
Substitution of the central hydrogens in tatpp for methoxy groups
in tatpOMe gives a new electron-rich bridging ligand which
was expected to have multi-electron storage capacity like that
of tatpp. The electrochemical and optical properties of the free
ligand, its Zn(II)-adducts, or its dinuclear ruthenium complex 24+
reveal strong similarities to tatpp, with some notable exceptions.
Electrochemistry reveals the redox processes centered on the
tatpOMe ligand to be far less well-behaved and irreversible which
was ultimately shown to be a consequence of ligand decomposition
upon reduction or oxidation. The methoxy groups are shown to
raise the energy of the HOMO and LUMO relative to tatpp but
the greater effect is on the HOMO. Due to the high reactivity
of tatpOMe towards demethylation and demethoxylation upon
reduction or oxidation, the photochemistry of 24+ is not suitable
for multi-electron-storage or transfer.
22 B. P. Sullivan, D. J. Salmon and T. J. Meyer, Inorg. Chem., 1978, 17,
3334–3341.
23 M. Yamada, Y. Tanaka, Y. Yoshimoto, S. Kuroda and I. Shimao, Bull.
Chem. Soc. Jpn., 1992, 65, 1006–1011.
24 P. Hammershoj, T. K. Reenberg, M. Pittelkow, C. B. Nielsen, O.
Hammerich and J. B. Christensen, Eur. J. Org. Chem., 2006, 2786–2794.
25 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.
26 S. D. Starnes, S. Arungundram and C. H. Saunders, Tetrahedron Lett.,
2002, 43, 7785–7788.
Acknowledgements
The authors wish to thank Professor Peter Kroll and Kenneth
Abayan for assistance with the electronic structure calculations.
We also want to thank the US National Science Foundation
(Grants CHE-0911720 (FMM and NT) and CHE-0840509
(500 MHz NMR)) and the Robert A. Welch Foundation (FMM,
Y-1301) for financial support.
27 Y. Shirai, A. J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, C. Yu-
Hung, L. B. Alemany, T. Sasaki, J.-F. Morin, M. Guerrero, K. F. Kelly
and J. M. Tour, J. Am. Chem. Soc., 2006, 128, 4854–4864.
28 J.-C. Chambron, J.-P. Suavage, E. Amouyal and P. Kiffi, Nouv. J. Chim.,
1985, 9, 527–529.
29 M.-J. Kim, R. Konduri, H. Ye, F. M. MacDonnell, F. Puntoriero, S.
Serroni, S. Campagna, T. Holder, G. Kinsel and R. Rajeshwar, Inorg.
Chem., 2002, 41, 2471–2476.
30 S. Bodige, A. S. Torres, D. J. Maloney, D. Tate, A. Walker, G. Kinsel
and F. M. MacDonnell, J. Am. Chem. Soc., 1997, 119, 10364–10369.
31 S. Rau, M. Schwalbe, S. Losse, H. Go¨rls, C. McAlister, F. M.
MacDonnell and J. G. Vos, Eur. J. Inorg. Chem., 2008, 1031–1034.
32 J. Fees, W. Kaim, M. Moscherosch, W. Matheis, J. Klima, M. Krejcik
and S. Zalis, Inorg. Chem., 1993, 32, 166–174.
References
1 T. J. Meyer, Acc. Chem. Res., 1989, 22, 163–169.
2 V. Balzani, A. Credi and M. Venturi, Nano Today, 2007, 2, 18–25.
3 F. M. MacDonnell, in Solar Hydrogen Generation: Toward a Renewable
Energy Future Ch. 6, ed. K. Rajeshwar and S. Licht, Springer Publishers,
New York, Editon edn, 2008.
4 E. Amouyal, Sol. Energy Mater. Sol. Cells, 1995, 38, 249–276.
5 S. M. Molnar, G. Nallas, J. S. Bridgewater and K. J. Brewer, J. Am.
Chem. Soc., 1994, 116, 5206–5210.
6 M. Elvington and K. J. Brewer, Inorg. Chem., 2006, 45, 5242–5244.
7 M. Elvington, J. Brown, S. M. Arachchige and K. J. Brewer, J. Am.
Chem. Soc., 2007, 129, 10644–10645.
8 M. Kirch, J. –M. Lehn and J.-P. Sauvage, Helv. Chim. Acta, 1979, 62,
1345–1384.
33 E. Amouyal, A. Homsi, J.-C. Chambron and J.-P. Sauvage, J. Chem.
Soc., Dalton Trans., 1990, 1841–1845.
34 M. K. Brennaman, J. H. Alstrum-Acevedo, C. N. Fleming, P. Jang, T. J.
Meyer and J. M. Papanikolas, J. Am. Chem. Soc., 2002, 124, 15094–
15098.
35 S. Campagna, S. Serroni, S. Bodige and F. M. MacDonnell, Inorg.
Chem., 1999, 38, 692–701.
36 E. Ishow, A. Gourdon, J.-P. Launay, P. Lecante, M. Verelst, C.
Chiorboli, F. Scandola and C.-A. Bignozzi, Inorg. Chem., 1998, 37,
3603–3609.
9 J. Kiwi and M. Gra¨tzel, Angew. Chem., 1979, 91, 659–660.
10 J.-M. Lehn, J.-P. Sauvage and R. Ziessel, Nov. J. Chim., 1981, 5, 291.
11 A. Moradpour, E. Amouyal, P. Keller and H. Kagan, New J. Chem.,
1978, 2, 547–549.
37 C. Chiorboli, M. A. J. Rodgers and F. Scandola, J. Am. Chem. Soc.,
2003, 125, 483–491.
12 Ozawa, M.-A. Haga and K. Sakai, J. Am. Chem. Soc., 2006, 128, 4926–
38 C. Chiorboli, S. Fracasso, F. Scandola, S. Campagna, S. Serroni, R.
Konduri and F. M. MacDonnell, Chem. Commun., 2003, 1658–1659.
39 C. Chiorboli, C.-A. Bignozzi, F. Scandola, E. Ishow, A. Gourdon and
J.-P. Launay, Inorg. Chem., 1999, 38, 2402–2410.
4927.
13 H. Ozawa, Y. Yokoyama, M. A. Haga and K. Sakai, Dalton Trans.,
2007, 1197–1206.
14 S. Rau, B. Schafer, D. Gleich, E. Anders, M. Friedrich, H. Gorls, W.
Henry and J. G. Vos, Angew. Chem., Int. Ed., 2006, 45, 6215–6218.
40 T. D. U. Azzena and G. Melloni, J. Org. Chem., 1992, 57, 1444–1448.
41 T. D. U. Azzena and G. Melloni, Gazze. Chimi. Ita., 1996, 126, 141–145.
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 11180–11187 | 11187
©