S. Hong et al. / Bioorg. Med. Chem. Lett. 20 (2010) 7212–7215
7215
Figure 5. Inhibition of HUVECs migration by B3 in a wound-induced migration assay. Migration was quantified by counting the number of cells that moved beyond the
reference line.
assay in T47D, SK-BR3, and MCF-7 human breast cancer cell
Acknowledgments
cultures. Notably, B3 showed potent antiproliferative effects at
submicromolar concentration (IC50 = 0.7 lM) as shown in Table 2.
This research was supported by National Research Foundation
of Korea (NRF) through general research Grants (NRF-2010-
001540 and 2010-0022179).
Activation of the PI3K pathway leads to phosphorylation of
Thr308 and Ser473 of AKT and subsequently a number of down-
stream substrates, such as IKK, GSK and Caspase-9. To ensure that
new series of compounds were inhibiting PI3K signaling in cells,
the most active compound based on growth assays, B3 was further
profiled for its ability to suppress cellular biomarker. B3 demon-
strated the ability to inhibit p-AKT (at Ser473) in T47D cancer cells
and promotes apoptosis of cancer cells, inducing cleaved-PARP
(cPARP) as a marker of apoptosis (data not shown). The percentage
of early-apoptotic cells was measured by the percentage of Annex-
in V-positive/PI-negative cells after incubation with various con-
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Graupera, M. et al Nature 2008, 453, 662; (b) Liang, S.; Yang, N.; Pan, Y.;
Deng, S.; Lin, X.; Yang, X.; Katsaros, D.; Roby, K. F.; Hamilton, T. C.; Connolly, D.
C.; Coukos, G.; Zhang, L. Cancer Res. 2003, 63, 4225; (c) Lelievre, E. et al Blood
2005, 105, 3935; (d) Jiang, B.; Bourbon, P. M.; Duan, L. J.; Nussbaum, R. L.; Fong,
G. H. Proc. Natl. Acad. Sci. 1999, 97, 1749.
2. Vanhaesebroeck, B.; Leevers, S. J.; Khatereh, A.; Timms, J.; Katso, R.; Driscoll, P. C.;
Woscholski, R.; Parker, P. J.; Waterfield, M. D. Annu. Rev. Biochem. 2001, 70, 535.
3. Cantley, L. C. Science 2002, 296, 1655.
4. (a) Brader, S.; Eccles, S. A. Tumori 2004, 90, 2; (b) Samuels, Y.; Wang, Z.; Bardelli,
A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S. M.; Riggins, G.
J.; Willson, J. K.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Velculescu, V. E.
Science 2004, 304, 554; (c) Wymann, M. P.; Marone, R. Curr. Opin. Cell Biol. 2005,
17, 141; (d) Parsons, D. W.; Wang, T.-L.; Samuels, Y.; Bardelli, A.; Cummins, J.
M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J. K.; Markowitz, S.;
Kinzler, K. W.; Vogelstein, B.; Lengauer, C.; Velculescu, V. E. Nature 2005, 436,
792; (e) Kang, S.; Bader, A. G.; Vogt, P. K. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
802; (f) Fan, Q.-W.; Knight, A. A.; Goldenberg, D. D.; Yu, W.; Mostov, K. E.;
Stokoe, D.; Shokat, K. M.; Weiss, W. A. Cancer Cell 2006, 9, 341.
centration of B3 for 24 h. Exposure to 50 lM of B3 resulted in a
28.4% increase in early-apoptotic cells (Annexin V-positive/PI-neg-
ative), a 47.5% increase in late-apoptotic cells after 24 h (Fig. 3).
Next, the antiangiogenic activity1 of the azaindole PI3K
a inhib-
itor was evaluated using assays for a wound induced migration of
human umbilical vein endothelial cells (HUVEC) and tubular for-
mation.9 While HUVECs were plated onto Matrigel where they
aligned with one another and formed tubes resembling a capillary
plexus, B3 produced significant inhibition of tubular network
formation of HUVECs on Matrigel beds in a dose-dependent man-
ner (Fig. 4).
Cell migration is important for angiogenesis and was examined
whether azaindole analog controls HUVEC motility using a wound
migration assay.10 Cell migration was quantified by counting the
number of HUVECs that migrated into the non-wounded region.
As shown in Figure 5, B3 reduced the migration of HUVECs in a
dose-dependent manner. These results together suggest that B3 re-
presses angiogenesis by inhibiting migration and tube formation of
endothelial cells.
In conclusion, a novel series of azaindole-based PI3Ka inhibitors
have been developed by the fragment-growing strategy. When
incorporated with the pyridyl sulfonamide moiety, azaindole
analogs show potency over PI3Ka. Introduction of the 3,4-dime-
thoxyphenyl group onto azaindole scaffold at C3 position enhanced
solubility and potency in both enzyme and antiproliferative cellu-
lar assays. Through our fragment-based approach, we rapidly
developed potent inhibitors, and B3 demonstrates that inhibition
of PI3K leads to blocking of phosphorylation of AKT and subse-
quent cancer cell growth. It also was found to inhibit tubular net-
work formation and a wound-induced migration of HUVECs. These
results clearly provide useful insight in the design of new inhibi-
tors with more potent antiangiogenic and antiproliferative effects.
5. Hung, A. W.; Silvestre, H. L.; Wen, S.; Ciulli, A.; Blundell, T. L.; Abell, C. Angew.
Chem., Int. Ed. 2009, 48, 8452.
6. (a) Hammond, M. et al Bioorg. Med. Chem. Lett. 2009, 19, 4441; (b) Seefeld, M.
A.; Rouse, M. B.; McNulty, K. C.; Sun, L.; Wang, J.; Yamashita, D. S.; Luengo, J. I.;
Zhang, S. Y.; Minthorn, E. A.; Concha, N. O.; Heerding, D. A. Bioorg. Med. Chem.
Lett. 2009, 19, 2244; (c) Wang, T.; Ledeboer, M. W.; Duffy, J. P.; Pierce, A. C.;
Zuccola, H. J.; Block, E.; Shlyakter, D.; Hogan, J. K.; Bennani, Y. L. Bioorg. Med.
Chem. Lett. 2010, 20, 153; (d) Echalier, A.; Bettayeb, K.; Ferandin, Y.; Lozach, O.;
Clement, M.; Valette, A.; Liger, F.; Marquet, B.; Morris, J. C.; Endicott, J. A.;
Joseph, B.; Meijer, L. J. Med. Chem. 2008, 51, 737.
7. (a) Folkes, A. J. et al J. Med. Chem. 2008, 51, 5522; (b) Cherian, P. T.; Koikov, L. N.;
Wortman, M. D.; Knittel, J. J. Bioorg. Med. Chem. Lett. 2009, 19, 2215; (c)
Sutherlin, D. P. et al J. Med. Chem. 2010, 53, 1086; (d) Venkatesan, A. M. et al J.
Med. Chem. 2010, 53, 2636; (e) Zhang, N.; Ayral-Kaloustian, M.; Anderson, J. T.;
Nguyen, T.; Das, S.; Venkatesan, A. M.; Brooijmans, N.; Lucas, J.; Yu, K.;
Hollander, I.; Mallon, R. Bioorg. Med. Chem. Lett. 2010, 20, 3526; (f) Knight, S. D.
et al ACS Med. Chem. Lett. 2010, 1, 39.
8. (a) Maira, S.-M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.;
Brachmann, S.; Chene, P.; Pover, A. D.; Schoemaker, K.; Fabbro, D.; Gabriel, D.;
Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; Garcıa-Echeverrıa, C. Mol.
Cancer Ther. 2008, 7, 1851; (b) Cherian, P. T.; Koikov, L. N.; Wortman, M. D.;
Knittel, J. J. Bioorg. Med. Chem. Lett. 2009, 19, 2215.
9. (a) Ishikawa, H.; Heaney, A. P.; Yu, R.; Horwitz, G. A.; Meled, S. J. Clin. Endocrinol.
Metab. 2001, 86, 867; (b) Denekamp, J. Br. J. Radiol. 1993, 66, 181.
10. Sato, Y.; Rifkin, D. B. J. Cell Biol. 1988, 107, 1199.