10.1002/chem.201703238
Chemistry - A European Journal
COMMUNICATION
[3]
a) K. Muñiz, L. Barreiro, R. Martín Romero, C. Martínez, J. Am. Chem.
Soc. 2017, 139, 4354; b) S. M. Banik, J. W. Medley, E. Jacobsen,
Science 2016, 353, 51; c) S. Haubenreisser, T. H. Wöste, C. Martínez,
K. Ishihara, K. Muñiz, Angew. Chem. Int. Ed. 2016, 55, 413; d) B.
Basdevant, C. Y. Legault, Org. Lett. 2015, 17, 4918; e) C. Bosset, R.
Coffinier, P. A. Peixoto, M. El Assal, K. Miqueu, J.-M. Sotiropoulos, L.
Pouységu, S. Quideau, Angew. Chem. Int. Ed. 2014, 53, 9860; f) P.
Mizar, A. Laverny, M. El-Sherbini, U. Farid, M. Brown, F. Malmedy, T.
Wirth, Chem. Eur. J. 2014, 20, 9910; g) T. Dohi, N. Takenaga, T.
Nakae, Y. Toyoda, M. Yamasaki, M. Shiro, H. Fujioka, A. Maruyama, Y.
Kita, J. Am. Chem. Soc. 2013, 5, 2469; h) M. Uyanik, T. Yasui, K.
Ishihara, Angew. Chem. Int. Ed. 2013, 52, 9215; i) W. Kong, P. Feige, T.
de Haro, C. Nevado, Angew. Chem. Int. Ed. 2013, 52, 2469; j) M.
Shimogaki, M. Fujita, T. Sugimura, Eur. J. Org. Chem. 2013, 7128; k) U.
Farid, T. Wirth, Angew. Chem. Int. Ed. 2012, 51, 3462.
an iodo-allene would then evolve into the alkylidene carbene H,
which could rapidly rearrange via a 1,2-silyl shift into the -
alkynylated product 6a’. The ligand exchange/coupling
sequence through the iodosyl intermediate I (path a) thus
appears less likely for the formation of -alkynylated -
ketoesters such as 6a’, but further mechanistic scrutinization
should not totally disregard the LC/LC’ pathways when using
harder nucleophiles such as O-naphtholate anions.
Nu
Nu = O-naphtholate or
b-ketoester-derived C-enolate
a
b
TBS
TsO
I
Ar = C2-symmetrical biphenylic moiety
Ar 4b
9-derived
O-naphtholate
O
O
[4]
a) Y. Li, D. P. Hari, M. V. Vita, J. Waser, Angew. Chem. Int. Ed. 2016,
55, 4436; b) K. Aradi, B. L. Tóth, G. L. Tolnai, Z. Novák, Synlett
2016, 27, 1456; c) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 2015,
ipso-ipso
LC
Ar
O
O
a
I
TBS
– ArI
– TsO
E
11
TBS
115, 650
.
TBS
[5]
[6]
M. Ochiai, Y. Kitagawa, N. Takayama, Y. Takaoka, M. Shiro, J. Am.
Chem. Soc. 1999, 121, 9233.
Ar
7-derived
O-naphtholate
I
O
O
ipso-allyl
LC’
OR
a) M. Chen, Z.-T. Huang, Q.-Y. Zheng, Org. Biomol. Chem. 2015, 13,
8812; b) X. Wu, S. Shirakawa, K. Maruoka, Org. Biomol. Chem. 2014,
OR
a
TBS
– ArI
– TsO
12, 5388; c) D. Fernández González, J. P. Brand, R. Mondière, J.
F
8
O
O
Waser, Adv. Synth. Catal. 2013, 355, 1631; d) D. Fernández González,
CO2Me
CO2Me
TBS
b
J. P. Brand, J. Waser, Chem. Eur. J. 2010, 16, 9457.
– ArI
TBS
[7]
[8]
[9]
S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-
Beaudenon, T. Buffeteau, D. Cavagnat, A. Chénedé Angew. Chem. Int.
Ed. 2009, 48, 4605.
–TsO
•
G
H
•
•
5a-derived
C-enolate
I
1,2-shift
Ar
O
O
3-iodanes are also commonly referred to as
ipso-ipso
LC
a) These T-shaped
a
CO2Me
CO2Me
TBS
alkynyliodonium salts, their ionic analogues; b) V. V. Zhdankin, P. J.
Stang, Tetrahedron 1998, 54, 10927.
I
– ArI
–TsO
Ar
I
6a’
a) M. J. Bouma, B. Olofsson, Chem. Eur. J. 2012, 18, 14242; b) C. Ye,
B. Twamley, J. M. Shreeve, Org. Lett. 2005, 7, 3961; c) T. Dohi, A.
Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji, H. Fujioka, S. B.
Caemmerer, Y. Kita, Angew. Chem. Int. Ed. 2008, 47, 3787; d) M.
Ochiai, Y. Takaoka, Y. Masaki, Y. Nagao, M. Shiro, J. Am. Chem. Soc.
1990, 112, 5677.
TBS
Scheme 4. Possible mechanisms for iodane-mediated alkynylation reactions.
In summary, we have prepared new axially chiral biphenylic
iodine(III) reagents equipped with alkynyl ligands. Even though it
would be premature at this stage to propose a full mechanistic
rationale for their stereoselective bond-forming aptitude, we
have demonstrated the capacity of these bis(3-iodanes) to
promote asymmetric alkynylation of -ketoesters and, for the first
time, -naphthol silyl ethers in high yields with very good
enantioselectivity up to 84% ee.
[10] A. R. Katritzky, J. K. Gallos, H. Dupont Durst, Magn. Reson. Chem.
1989, 27, 815; Although 13C NMR chemical shifts enable the
assignment of the oxidation state of the iodine atom, the structures of
iodanes 4a/b, for which we could not obtain X-ray quality crystals,
remain hypothetical.
[11] Under similar conditions, conversion of 5a using racemic iodane (±)-4a
furnished (±)-6a, whose enantiomers were separated by HPLC and
unambiguously characterized by NMR and X-ray analyses (see the SI).
[12] CCDC 1424985 ((R)-6a), 1424986 ((S)-6a), 1477527 ((R)-8g), 1495372
((±)-10a) and 1495370 (11) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
Acknowledgements
Financial support from the Ministère de la Recherche, the CNRS,
and the Conseil Régional d’Aquitaine, including doctoral
fellowships for S.C. and C.B., is gratefully acknowledged.
[13] Examples of enantioselective C–C bond-forming dearomatization of -
naphthols using chiral phosphoric acids or ligand•metal complexes: a)
X.-Q. Li, H. Yang, J.-J. Wang, B.-B. Gou, J. Chen, L. Zhou, Chem. Eur.
J. 2017, 23, 5381; b) H.-F. Tu, C. Zheng, R.-Q. Xu, X.-J. Liu, S.-L. You,
Angew. Chem. Int. Ed. 2017, 56, 3237; c) D. Yang, L. Wang, M. Kai, D.
Li, X. Yao, R. Wang, Angew. Chem. Int. Ed. 2015, 54, 9523; d) C.-X.
Zhuo, S.-L. You, Angew. Chem. Int. Ed. 2013, 52, 10056; e) T. Oguma,
T. Katsuki, J. Am. Chem. Soc. 2012, 134, 20017.
Conflict of interest
The authors delclare no conflict of interest.
Keywords: alkynylation • asymmetric synthesis • hypervalent
compounds • iodanes • metal-free reactions
[14] HPLC separation of an enantioenriched mixture of 8g, followed by
crystallization of the major optical isomer, led to the identification of the
R-enantiomer (see the SI).
[1]
a) Hypervalent Iodine Chemistry, in Topics Curr. Chem., Vol. 373 (Ed.:
T. Wirth), Springer, Switzerland, 2016; b) A. Yoshimura, V. V.
Zhdankin, Chem. Rev. 2016, 116, 3328.
[15] a) J.-P. Finet, Ligand Coupling Reactions with Heteroatomic
Compounds, Vol. 18, Pergamon, Oxford, 1998; b) A. Ozanne-
Beaudenon, S. Quideau, Angew. Chem. Int. Ed. 2005, 44, 7065.
[16] M. Ochiai, M. Kunishima, Y. Nagao, K. Fuji, M. Shiro, E. Fujita, J. Am.
Chem. Soc. 1986, 108, 8281
[2]
a) F. Berthiol, Synthesis 2015, 47, 587; b) A. Parra, S. Reboredo,
Chem. Eur. J. 2013, 19, 17244; c) H. Liang, M. A. Ciufolini, Angew.
Chem. Int. Ed. 2011, 50, 11849.
This article is protected by copyright. All rights reserved.