offers
a
straightforward way to synthesize an O,O,O,O-
¶ Spectroscopic data for compound 5: 1H-NMR (400 MHz, CDCl3): 1.33
3
(t, JHH = 7.1 Hz, 12 H, CH3–CH2–O), 2.10 (s, 3H, CH3–), 4.13 (m, 8H,
tetraalkylmethylenebis(thiophosphonate) derivative. On the other
hand, when the metallation is imposed on the aromatic ring, by
using a metal–halogen exchange procedure, a more classic [1,3]-
phospho-Fries rearrangement is observed leading to the formation
of the arylbis(thiophosphonate) 5. The coordination behaviour of
compounds 3 and 5 will be investigated in our next study.
CH3–CH2–O), 7.70 (t, 3JHP = 14.9 Hz, 1H, C–H), 9.67 (s, 2H, O–H); 31P:
(161.9 MHz, CDCl3): 78.1; 13C NMR (75.5 MHz, CDCl3): 8.12 (t, 4JCP
=
1.5 Hz, Ar–CH3), 15.94 and 16.00 (2d, 3JCP = 4.0 Hz; O–CH2–CH3), 63.11
and 63.15 (2d, 2JCP = 2.7 Hz; O–CH2–CH3), 107.22 (dd, 1JCP = 156.0 Hz,
3JCP = 13.0 Hz, C–P); 114.70 (t, 2JCP = 9.5 Hz, C–H); 132.48 (t, 3JCP = 8 Hz,
2
4
C–CH3); 162.36 (~dd, JCP = 11 Hz, JCP = 3.5 Hz, C–OH); Anal, Calcd
for C15H26O6P2S2: C,42.05; H,6.12; S,14.97, Found: C, 41.70; H,6.32; S,
14.84; IR (ATR): 777 (52); 795 (53); 959 (O–C, 46); 1011 (P–O, 48); 1108
(67); 1388 (79); 1586 (74); 1599 (73); 2981 (86); 3131 (O–H . . . S; 79); Exact
Mass, Calcd for C15H27O6P2S2 (M+1): 429.0724; found: 429.0711; m/z
(MSMS m/z = 429; ESI): 429 (M + 1, 63%); 401 (M + 1 - CH2 CH2;
100%); 383 (31%); 373 (M + 1 - 2 ¥ CH2 CH2; 10%); 355 (34%).
Acknowledgements
We acknowledge CNRS for funding and the “Service Communs
de l’UBO: RMN-RPE et spectrome´trie de masse”.
1 L. S. Melvin, Tetrahedron Lett., 1981, 22, 3375–3376.
2 (a) B. Dhawan and D. Redmore, J. Org. Chem., 1984, 49, 4018–4021;
(b) C. M. Taylor and A. J. Watson, Curr. Org. Chem., 2004, 8, 623–636;
(c) K. P. Jayasundera, A. J. Watson and C. M. Taylor, Tetrahedron Lett.,
2005, 46, 4311–4313.
3 O. Legrand, J. M. Brunel, T. Constantieux and G. Buono, Chem.–
Eur. J., 1998, 4, 1061–1067.
4 T. L. Yeung, K. Y. Chan, R. K. Haynes, I. D. Williams and L. L. Yueng,
Tetrahedron Lett., 2001, 42, 457–460.
5 (a) S. Masson, J. F. Saint-Clair and M. Saquet, Synthesis, 1993, 485–
486; (b) B. F. Bonini, C. Femoni, M. Fochi, M. Gulea, S. Masson and
A. Ricci, Tetrahedron: Asymmetry, 2005, 16, 3003–3010.
6 C. Mauger, M. Vazeux and S. Masson, Tetrahedron Lett., 2004, 45,
3855–3859.
Notes and references
† Spectroscopic data for compound 2: 1H-NMR (400 MHz, CDCl3): 1.36
(t, 3JHH = 7 Hz, 12H, 4 ¥ O–CH2–CH3); 2.25 (s, 3H, C2–CH3); 4.24 (m, 8H,
4 ¥ O–CH2–CH3); 7.12 (s, 2H, C4–H et C6–H); 7.26 (s, 1H, C5–H); 31P-
NMR (161.9 MHz, CDCl3): 62.9; 13C-NMR (75.5 MHz, CDCl3): 10.83
3
2
(s, C2–CH3); 16.16 (d, JCP = 8 Hz, O–CH2–CH3); 65.30 (d, JCP = 6 Hz,
O–CH2–CH3); 117.55 and 117.58 (2d, 3JCP = 2 Hz, C4 and C6); 123.44 (t,
3JCP = 6 Hz, C2); 126.28 (t, 4JCP = 2 Hz, C5); 150.07 (d, 2JCP = 7 Hz, C1 and
C3); IR: 950 (C–O); 1015 (P–O); 1464; 1583 (C C); 2982 (C–H).
‡ Spectroscopic data for compound 3: 1H-NMR (400 MHz, CDCl3): 1.24
et 1.31 (2t, 3JHH = 7 Hz, 12H, 4 ¥ O–CH2–CH3); 4.16 (m, 8H, 4 ¥ O–CH2–
7 O. Legrand, J. M. Brunel and G. Buono, Tetrahedron, 2000, 56, 595–
603.
8 S. Marie, M. Lutz, A. L. Spek, R. J. M. Klein Gebbink, G. van Koten,
2
3
CH3); 5.10 (t, JHP = 26 Hz, 1H, CH–P); 6.45 et 6.60 (2d, JHH = 8 Hz,
2H, 2 ¥ CH); 7.07 (t, 3JHH = 8 Hz, 1H, CH); 7.42 (s, 1H, OH); 31P-NMR
(161.9 MHz, CDCl3): 84.8; 13C-NMR (75.5 MHz, CDCl3): 15.98 (m, O–
CH2–CH3); 49.46 (t, 1JCP = 102.8 Hz, CH–P); 63.80, 63.82, 64.12 and 64.15
(4d, 2JCP = 3.4 Hz, O–CH2–CH3); 106.28 (t, JCP = 5.6 Hz, Car); 107.94 (s,
Car); 111.40 (t, JCP = 2.4 Hz, Car); 129.63 (t, JCP = 2.5 Hz, Car); 154.70 (t,
JCP = 6.9 Hz, Car); 157.02 (t, JCP = 4.5 Hz, Car). MALDI-TOF: m/z calc.
for C15H27O6P2S2 [M + 1]: 429.0724, Found: 429.072.
N. Kervarec, F. Michaud, J. Y. Salaun and P. A. Jaffres, J. Organomet.
¨
`
Chem., 2009, 694, 4001–4007.
9 A. Fraix, M. Lutz, A. L. Spek, R. J. M. Klein Gebbink, G. van Koten,
J. Y. Salaun and P. A. Jaffres, Dalton Trans., 2010, 39, 2942–2946.
¨
`
10 T. Dieng, A. Fraix, J. Y. Salaun, I. Dez, R. J. M. Klein Gebbink, G. van
¨
Koten and P. A. Jaffres, Synlett, 2008, 3121–3124.
`
11 (a) J. P. Haelters, H. Couthon-Gourves, A. Le Goff, G. Simon, B.
`
§ Spectroscopic data for compound 4: 1H-NMR (400 MHz, CDCl3): 1.36
`
Corbel and P. A. Jaffres, Tetrahedron, 2008, 64, 6537–6543; (b) E.
3
(t, JHH = 7.1 Hz, 12 H, CH3–CH2–O), 2.41 (s, 3H, CH3–), 4.27 (m, 8H,
´
Migianu-Griffoni, C. Mbemba, R. Burgada, D. Lecercle, F. Taran
and M. Lecouvey, Tetrahedron, 2009, 65, 1517–1523; (c) G. Sturtz,
H. Couthon, O. Fabulet, M. Mian and S. Rosini, Eur. J. Med. Chem.,
1993, 28, 899–903.
CH3–CH2–O), 7.68 (s, 1H, C–H); 31P-NMR: (161.9 MHz, CDCl3): 62.5;
13C (75.5 MHz, CDCl3): 14.16 (s, Ar–CH3), 15.95 (d, JCP = 8.0 Hz; O–
3
CH2–CH3), 65.44 (m,; O–CH2–CH3), 113.39 and 113.46 (2d, 3JCP = 4.0 Hz,
C–Br); 129.15 (t, 3JCP = 3.7 Hz, C–CH3); 133.42 (s, C–H); 147.68 (m, Car–
O–P)
12 M. Vetrichelvan and S. Valiyaveettil, Chem.–Eur. J., 2005, 11, 5889–
5898.
11316 | Dalton Trans., 2010, 39, 11314–11316
This journal is
The Royal Society of Chemistry 2010
©