10.1002/anie.201705525
Angewandte Chemie International Edition
COMMUNICATION
[2]
[3]
[4]
a) J.-S. Yang, C.-J. Lin, J. Photochem. Photobiol. A: Chem. 2015, 312,
107-120. b) J. Lin, X. Ni, RSC Adv. 2015, 5, 14879-14886. c) B.
Schlummer, U. Scholz, Adv. Synth. Catal. 2004, 346, 1599-1626. d) J.-
S. Yang, Y.-H. Lin, C.-S. Yang, Org. Lett. 2002, 4, 777-780.
quantitative comparison of rates, the calorimetric data indicated
that L3 was much more efficient with full consumption of starting
material in less than 20 minutes (Figure 4, inset) compared to
250 minutes for L1.
a) V. Singh, S. Wang, E. T. Kool, J. Am. Chem. Soc. 2013, 135, 6184-
6191. b) E. Benedetti, L. Kocsis, K. M. Brummond, J. Am. Chem. Soc.
2012, 134, 12418-12421. c) X. Jin, C. Uttamapinant, A. Y. Ting,
ChemBioChem 2011, 12, 65-70.
a) D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443-4458. b) C.
Affouard, R. D. Crockett, K. Diker, R. P. Farrell, G. Gorins, J. R.
Huckins, S. Caille, Org. Process. Rec. Dev. 2015, 19, 476-485. c) J. B.
Sperry, K. E. P. Wiglesworth, I. Edmonds, P. Fiore, D. C. Boyles, D. B.
Damon, R. L. Dorow, E. L. P. Chekler, J. Langille, J. W. Coe, Org.
Process. Rec. Dev. 2014, 18, 1752-1758. d) Y. Liu, M. Prashad, W.-C.
Shieh, Org. Process. Rec. Dev. 2014, 18, 239-245.
[5]
a) Q. Shen, T. Ogata, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130,
6586-6596. b) M. R. Biscoe, B. P. Fors, S. L. Buchwald, J. Am. Chem.
Soc. 2008, 130, 6686-6687. c) D. S. Surry, S. L. Buchwald, Chem. Sci.
2011, 2, 27-50. d) N. H. Park, E. V. Vinogradova, D. S. Surry, S. L.
Buchwald, Angew. Chem. 2015, 127, 8377-8380; Angew. Chem. Int.
Ed. 2015, 54, 8259-8262. e) P. Ruiz-Castillo, D. G. Blackmond, S. L.
Buchwald, J. Am. Chem. Soc. 2015, 137, 3085-3092.
[6]
[7]
C. Fischer, B. Koenig, Beilstein J. Org. Chem. 2011, 7, 59-74.
A. B. Santanilla, E. L. Regalado, T. Pereira, M. Shevlin, K. Bateman, L.-
C. Campeau, J. Schneeweis, S. Berritt, Z.-C. Shi, P. Nantermet, Y. Liu,
R. Helmy, C. J. Welch, P. Vachal, I. W. Davies, T. Cernak, S. D. Dreher.
Science, 2015, 347, 49-53.
Figure 4. Reaction progress kinetic profiles for the Pd-catalyzed reaction of 3-
bromoanisole with n-propylamine. NaOtBu was used as the base, and OA1
and OA3 were used as the catalysts. Reactions were run at 20 °C in dioxane.
[8]
[9]
D. Davyt, G. Serra, Mar. Drugs, 2010, 8, 2755-2780.
a) P. A. Harris, M. Cheung, R. N. Hunter III, M. L. Brown, J. M. Veal, R.
T. Nolte, L. Wang, W. Liu, R. M. Crosby, J. H. Johnson, A. H. Epperly,
R. Kumar, D. K. Luttrell, J. A. Stafford. J. Med. Chem. 2005, 48, 1610-
1619. b) E. Vieira, J. Huwyler, S. Jolidon, F. Knoflach, V. Mutel, J.
Wichmann. Bioorg. Med. Chem. Lett. 2009, 19, 1666-1669. c) L.
Lintnerová, L. Kováčiková, G. Hanquet, A. Bohác. J. Heterocyclic Chem.
2015, 52, 425-439.
In conclusion, a new ligand (L3, EPhos) for the palladium
catalyzed C–N cross-couplings has been developed, which was
applied to the formation of 2-(hetero)arylaminooxazoles and 4-
(hetero)arylaminothiazoles. Furthermore, experiments have
demonstrated that the respective palladium(II) phenoxo complex
is the resting state for this reaction when NaOPh is applied as
the base. The O-bound isomer was not observed if L3 was
used as the supporting ligand (Figure 3). Although this
phenomenon does represent a significant difference in behavior
between L1 and L3, ongoing studies will elucidate whether this
equilibrium accounts for the difference in efficiency observed
between these ligands.
[10] G. M. Noonan, A. P. Dishington, J. Pink, A. D. Campbell, Tetrahedron
Letters, 2012, 53, 3038-3043.
[11] a) B. P. Fors, D. A. Watson, M. R. Biscoe, S. L. Buchwald, J. Am.
Chem. Soc. 2008, 130, 13552-13554. b) D. Maiti, B. P. Fors, J. L.
Henderson, Y. Nakamura, S. L. Buchwald. Chem. Sci. 2011, 2, 57-68
[12] For recent literature examples from other research groups solving
challenging C–N cross-couplings using BrettPhos as the supporting
ligand see a) M. Günther, M. Juchum, G. Kelter, H. Fiebig, S. Laufer,
Angew. Chem. 2016, 128, 11050-11054: Angew. Chem. Int. Ed. 2016,
55, 10890-10894. b) J. Wlochal, A. Bailey, Tetrahedron Letters, 2015,
56, 6791-6794.
Acknowledgements
[13] a) P. L. Arrechea, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138,
12486-12493. b) B. P. Fors, N. R. Davies, S. L. Buchwald, J. Am.
Chem. Soc. 2009, 131, 5766-5768. c) E. Gioria, J. D. Pozo, J. M.
Martínez-Ilarduya, P. Espinet, Angew. Chem. 2016, 128, 13470-13474.:
Angew. Chem. Int. Ed. 2016, 55, 13276-13280.
Research reported in this publication was supported by the
National Institutes of Health under award number GM58160
whom we gratefully acknowledge. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health. E. O. thanks
the Villum Foundation for a postdoctoral fellowship. We thank Dr.
Yiming Wang, Dr. Michael Pirnot, and Dr. Mycah Uehling for
their help in the preparation of this manuscript.
[14] N. C. Bruno, N. Niljianskul, S. L. Buchwald, J. Org. Chem. 2014, 79,
4161-4166.
[15] R. F. Pellón, M. L. Docampo, M. L. Fascio, Synth. Commun. 2007, 37,
1853-1864.
[16] a) A. T. Brusoe, J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 8460-
8468. b) K. H. Hoi, M. G. Organ, Chem. Eur. J. 2012, 18, 804-807. c) J.
R. Martinelli, T. P. Clark, D. A. Watson, R. H. Munday, S. L. Buchwald,
Angew. Chem. 2007, 119, 8612-8615: Angew. Chem. Int. Ed. 2007, 46,
8460-8463. d) J. P. Schulte, S. R. Tweedie, Synlett, 2007, 15, 2331-
2336.
Keywords: EPhos • 2-aminooxazole • C–N cross-coupling •
palladium catalysis • sodium phenoxide
[17] D. G. Blackmond, Angew. Chem. 2005, 117, 4374-4393: Angew. Chem.
Int. Ed. 2005, 44, 4302-4320.
[1]
P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649.
This article is protected by copyright. All rights reserved.