Green Chemistry
Page 4 of 5
COMMUNICATION
DOI: 10.1039/C4GC02089H
To gain a better insight into this Cu catalyzed three-component
reaction with carbon dioxide, control experiments were performed.
Normally, Cu-catalysed three component reaction was carried out at
atmospheric pressure of CO2. To prove the origin of inserted carbon
dioxide, isotope-labelling experiments with C18O2 were conducted to
investigate the presence of carbon dioxide in the oxazolidinedione
molecule (Scheme 2).10 As a result, the 18O-labeled oxazolidinedione
(MW 329) was detected by mass spectral analysis, and the non-labeled
oxazolidinedione (MW 325, MW 327) was not detected at all (See
supplementary information Figure S2). This result clearly supports the
proposed reaction mechanism by demonstrating that two oxygen atoms
were originated from carbon dioxide, indicating the participation of
whole CO2 molecule in forming the heterocyclic ring during the three
component reaction.
Acknowledgements
This work was supported by a National Research Foundation of Korea
(NRF) grant funded by the Korean Government (MEST) (2008-
0061983).
References
1. a) P. N. Pearson, M. R. Palmer, Nature, 2000, 406, 695; b) M.
Pagani, Z. H. Liu, J. L. Riviere, A. C. Ravelo, Nat. Geosci. 2010, 3,
27.
2. CO2 as
a Chemical Feedstock, ed. M. Aresta, Wiley-VHC,
Weinheim, 2010; b) K. Huang, C. L. Sun, Z. J. Shi, Chem. Soc. Rev.
2011, 40, 2435; c) M. Cokoja, C. Bruckmeier, B. Rieger, W. A.
Herrmann, F. E. Kuehn, Angew. Chem., Int. Ed. 2011, 50, 8510; d)
T. Sakakura, J. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365.
3. K. Sasano, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2013, 135,
10954; b) I. I. F. Boogaerts, S. P. Nolan, J. Am. Chem. Soc. 2010,
132, 8858; c) L. Zhang, J. Cheng, T. Ohishi, Z. Hou, Angew. Chem.
Int. Ed. 2010, 49, 8670; d) O. Vechorkin, N. Hirt, X. Hu, Org. Lett.
2010, 12, 3567; e) A. Correa, T. León, R. Martin, J. Am. Chem. Soc.
2014, 136, 1062; f) K. Inamoto, N. Asano, Y. Nakamura, M.
Yonemoto, Y. Kondo, Org. Lett. 2012, 14, 2622; g) H. Inomata, K.
Ogata, S. Fukuzawa, Z. Hou, Org. Lett. 2012, 14, 3986; h) W. J.
Yoo, M. G. Capdevila, X. Du, S. Kobayashi, Org. Lett. 2012, 14,
5326; i) D. Yu, Y. Zhang, P. Natl. Acad. Sci. 2010, 107, 20184; j) H.
Mizuno, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2011, 133, 1251;
k) Y. Sugawara, W. Yamada, S. Yoshida, T. Ikeno, T. Yamada, J.
Am. Chem. Soc. 2007, 129, 12902; l) S. Kikuchi, K. Sekine, T.
Ishida, T. Yamada, Angew. Chem. Int. Ed. 2012, 51, 6989.
4. H. Yoshida, H. Fukushima, J. Ohshita, A. Kunai, J. Am. Chem. Soc.
2006, 128, 11040; b) H. Yoshida, T. Morishita, J. Ohshita, Org. Lett.
2008, 10, 3845.
Scheme 2. Mechanistic prove for the synthesis of oxazolidinedione via
CO2 fixation multicomponent reactions by isotopic labelling
experiments.
Conclusion
In conclusion, we demonstrate fixation of carbon dioxide for
oxazolidinedione synthesis via a novel multicomponent synthesis. This
reaction employed catalytic Cu2O in the presence of Cs2CO3 base to
5. W. J. Yoo, T. V. Q. Nguyen, S. Kobayashi, Angew. Chem. Int. Ed.
2014, 53, 10213.
6. T. Kaicharla, M. Thangaraj , A. T. Biju, Org. Lett., 2014, 16, 1728.
7. a) J. W. C. Lewis, Chem. Rev., 1958, 58, 63; b) P. C. Unangst, D. T.
Connor, W. A. Cetenko, R. J. Sorenson, C. R. Kostlan, J. C. Sircar,
C. D. Wright, D. J. Schrier, R. D. Dyer, J. Med. Chem. 1994, 37,
322; c) D. A Heerding, L. T. Christmann, T. J. Clark, D. J. Holmes,
S. F. Rittenhouse, D. T. Takata, J. W. Venslavsky, Bioorg. Med.
Chem. Lett., 2003, 13, 3771
8. K. Harada, H. Kubo, A. Tanaka, K. Nishioka, Bioorg. Med. Chem.
Lett. 2012, 22, 504.
9. S. H. Kim, K. H. Kim, S. H. Hong, Angew. Chem. Int. Ed. 2014, 53,
771; b) S. L. Peterson, S. M. Stucka, C. J. Dinsmore, Org. Lett.
2010, 12, 1340; c) M. Yoshida, Y. Komatsuzaki, M. Ihara, Org. Lett.
2008, 10, 2083.
synthesize oxazolidinedione derivatives in good-to-high yields.
A
number of aliphatic and aromatic amines as well as acrylic acid
derivatives can be transformed in high yields to pharmaceutically
relevant oxazolidinedione compounds even on a large scale. This
catalyst system does not need any sensitive ligands or expensive
additives. The results indicate that carbon dioxide can conceptually be
further utilized in various multicomponent reactions. Therefore, we
anticipate that this work would contribute substantially to the
development of next-generation CO2 utilization.
Experimental Details.
To a solution of a substituted 2-bromo-3-phenylacrylic acid (1.0 mmol),
amines (1.2 mmol) Cu2O (1.0 mol%) and DMF (4mL) in a Schlenk flask
was added Cs2CO3 (2.0 mmol, 2eq.). The inside of the reaction container
was purged with CO2 by a balloon three times (~1.0 atm). The reaction
mixture was stirred at 80 °C for 12 hours. Aqueous solution of NaHCO3
was added to reaction mixture and the water layer was separated with
separatory funnel using CHCl3. The combined organic layer was dried
over anhydrous Na2SO4, concentrated under reduced pressure. The pure
corresponding oxazolidinone was obtained with no further purification.
Oxazolidinone have been further crystallize by the methanol.
10. T. Ishida, S. Kikuchi, T. Yamada, Org. Lett. 2013, 15, 3710.
11. X. Gong, H. Yang, H. Liu, Y. Jiang, Y. Zhao, H. Fu, Org. Lett. 2010,
12, 3128.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012